This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2023-IMOC, C6

Given integer $n \geq 3$. $1, 2, \ldots, n$ were written on the blackboard. In each move, one could choose two numbers $x, y$, erase them, and write down $x + y, |x-y|$ in the place of $x, y$. Find all integers $X$ such that one could turn all numbers into $X$ within a finite number of moves.

2018 Czech-Polish-Slovak Junior Match, 5

There are $2n$ people ($n \ge 2$) sitting around the round table, with each person getting to know both with his neighbors and exactly opposite him sits a person he does not know. Prove that people can rearrange in such a way that everyone knows one of their two neighbors.

2016 Tuymaada Olympiad, 2

A cube stands on one of the squares of an infinite chessboard. On each face of the cube there is an arrow pointing in one of the four directions parallel to the sides of the face. Anton looks on the cube from above and rolls it over an edge in the direction pointed by the arrow on the top face. Prove that the cube cannot cover any $5\times 5$ square.

2014 China Northern MO, 8

Two people, $A$ and $B$, play the game of blowing up a balloon. The balloon will explode only when the volume of the balloon $V>2014$ mL. $A$ blows in $1$ mL first, and then they takes turns blowing. It is agreed that the gas blown by each person must not be less than the gas blown by the other party last time and should not be more than twice the amount of gas the other party blew last time. The agreement is that the person who blows up the balloon loses. Who has a winning strategy ? Briefly explain it. (Do not consider the change in volume caused by the change in tension when the balloon is inflated).

2018 BMT Spring, Tie 2

$6$ people stand in a circle with water guns. Each person randomly selects another person to shoot. What is the probability that no pair of people shoots at each other?

MMATHS Mathathon Rounds, 2015

[u]Round 1[/u] [b]p1.[/b] If this mathathon has $7$ rounds of $3$ problems each, how many problems does it have in total? (Not a trick!) [b]p2.[/b] Five people, named $A, B, C, D,$ and $E$, are standing in line. If they randomly rearrange themselves, what’s the probability that nobody is more than one spot away from where they started? [b]p3.[/b] At Barrios’s absurdly priced fish and chip shop, one fish is worth $\$13$, one chip is worth $\$5$. What is the largest integer dollar amount of money a customer can enter with, and not be able to spend it all on fish and chips? [u]Round 2[/u] [b]p4.[/b] If there are $15$ points in $4$-dimensional space, what is the maximum number of hyperplanes that these points determine? [b]p5.[/b] Consider all possible values of $\frac{z_1 - z_2}{z_2 - z_3} \cdot \frac{z_1 - z_4}{z_2 - z_4}$ for any distinct complex numbers $z_1$, $z_2$, $z_3$, and $z_4$. How many complex numbers cannot be achieved? [b]p6.[/b] For each positive integer $n$, let $S(n)$ denote the number of positive integers $k \le n$ such that $gcd(k, n) = gcd(k + 1, n) = 1$. Find $S(2015)$. [u]Round 3 [/u] [b]p7.[/b] Let $P_1$, $P_2$,$...$, $P_{2015}$ be $2015$ distinct points in the plane. For any $i, j \in \{1, 2, ...., 2015\}$, connect $P_i$ and $P_j$ with a line segment if and only if $gcd(i - j, 2015) = 1$. Define a clique to be a set of points such that any two points in the clique are connected with a line segment. Let $\omega$ be the unique positive integer such that there exists a clique with $\omega$ elements and such that there does not exist a clique with $\omega + 1$ elements. Find $\omega$. [b]p8.[/b] A Chinese restaurant has many boxes of food. The manager notices that $\bullet$ He can divide the boxes into groups of $M$ where $M$ is $19$, $20$, or $21$. $\bullet$ There are exactly $3$ integers $x$ less than $16$ such that grouping the boxes into groups of $x$ leaves $3$ boxes left over. Find the smallest possible number of boxes of food. [b]p9.[/b] If $f(x) = x|x| + 2$, then compute $\sum^{1000}_{k=-1000} f^{-1}(f(k) + f(-k) + f^{-1}(k))$. [u]Round 4 [/u] [b]p10.[/b] Let $ABC$ be a triangle with $AB = 13$, $BC = 20$, $CA = 21$. Let $ABDE$, $BCFG$, and $CAHI$ be squares built on sides $AB$, $BC$, and $CA$, respectively such that these squares are outside of $ABC$. Find the area of $DEHIFG$. [b]p11.[/b] What is the sum of all of the distinct prime factors of $7783 = 6^5 + 6 + 1$? [b]p12.[/b] Consider polyhedron $ABCDE$, where $ABCD$ is a regular tetrahedron and $BCDE$ is a regular tetrahedron. An ant starts at point $A$. Every time the ant moves, it walks from its current point to an adjacent point. The ant has an equal probability of moving to each adjacent point. After $6$ moves, what is the probability the ant is back at point $A$? PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2782011p24434676]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Bogdan Stan, 4

Consider $ 16 $ pairwise distinct natural numbers smaller than $ 1597. $ [b]a)[/b] Prove that among these, there are three numbers having the property that the sum of any two of them is bigger than the third. [b]b)[/b] If one of these numbers is $ 1597, $ is still true the fact from subpoint [b]a)[/b]? [i]Teodor Radu[/i]

Russian TST 2017, P1

A planar country has an odd number of cities separated by pairwise distinct distances. Some of these cities are connected by direct two-way flights. Each city is directly connected to exactly two ther cities, and the latter are located farthest from it. Prove that, using these flights, one may go from any city to any other city

KoMaL A Problems 2021/2022, A. 810

For all positive integers $n,$ let $r_n$ be defined as \[r_n=\sum_{i=0}^n(-1)^i\binom{n}{i}\frac{1}{(i+1)!}.\]Prove that $\sum_{r=1}^\infty r_i=0.$

1994 Tournament Of Towns, (434) 4

A rectangular $1$ by $10$ strip is divided into $10$ $1$ by $1$ squares. The numbers $1$, $2$, $3$,$...$, $10$ are placed in the squares in the following way. First the number $1$ is placed in an arbitrary square, then $2$ is placed in a neighbouring square, then $3$ is placed into a free square neighbouring one of the squares occupied earlier, and so on (up to $10$). How many different permutations of $1$,$2$, $3$,$...$, $10$ can one get in this way? (A Shen)

2013 Serbia National Math Olympiad, 4

Determine all natural numbers $n$ for which there is a partition of $\{1,2,...,3n\}$ in $n$ pairwise disjoint subsets of the form $\{a,b,c\}$, such that numbers $b-a$ and $c-b$ are different numbers from the set $\{n-1, n, n+1\}$.

2015 Bundeswettbewerb Mathematik Germany, 4

Many people use the social network "BWM". It is known that: By choosing any four people of that network there always is one that is a friend of the other three. Is it then true that by choosing any four people there always is one that is a friend of everyone in "BWM"? [b]Note:[/b] If member $A$ is a friend of member $B$, then member $B$ also is a friend of member $A$.

1973 Dutch Mathematical Olympiad, 2

Prove that for every $n \in N$ there exists exactly one sequence of $2n + 1$ consecutive numbers, such that the sum of the squares of the first $n+1$ numbers is equal to the sum of the squares of the last $n$ numbers. Also express the smallest number of that sequence in terms of $n$.

2021 JHMT HS, 10

Let $P$ be a set of nine points in the Cartesian coordinate plane, no three of which lie on the same line. Call an ordering $\{Q_1, Q_2, \ldots, Q_9\}$ of the points in $P$ [i]special[/i] if there exists a point $C$ in the same plane such that $CQ_1 < CQ_2 < \cdots < CQ_9$. Over all possible sets $P,$ what is the largest possible number of distinct special orderings of $P?$

2005 Thailand Mathematical Olympiad, 5

A die is thrown six times. How many ways are there for the six rolls to sum to $21$?

2005 Danube Mathematical Olympiad, 4

Let $k$ and $n$ be positive integers. Consider an array of $2\left(2^n-1\right)$ rows by $k$ columns. A $2$-coloring of the elements of the array is said to be [i]acceptable[/i] if any two columns agree on less than $2^n-1$ entries on the same row. Given $n$, determine the maximum value of $k$ for an acceptable $2$-coloring to exist.

1990 IMO Longlists, 4

Given $ n$ countries with three representatives each, $ m$ committees $ A(1),A(2), \ldots, A(m)$ are called a cycle if [i](i)[/i] each committee has $ n$ members, one from each country; [i](ii)[/i] no two committees have the same membership; [i](iii)[/i] for $ i \equal{} 1, 2, \ldots,m$, committee $ A(i)$ and committee $ A(i \plus{} 1)$ have no member in common, where $ A(m \plus{} 1)$ denotes $ A(1);$ [i](iv)[/i] if $ 1 < |i \minus{} j| < m \minus{} 1,$ then committees $ A(i)$ and $ A(j)$ have at least one member in common. Is it possible to have a cycle of 1990 committees with 11 countries?

2021 All-Russian Olympiad, 8

One hundred sages play the following game. They are waiting in some fixed order in front of a room. The sages enter the room one after another. When a sage enters the room, the following happens - the guard in the room chooses two arbitrary distinct numbers from the set {$1,2,3$}, and announces them to the sage in the room. Then the sage chooses one of those numbers, tells it to the guard, and leaves the room, and the next enters, and so on. During the game, before a sage chooses a number, he can ask the guard what were the chosen numbers of the previous two sages. During the game, the sages cannot talk to each other. At the end, when everyone has finished, the game is considered as a failure if the sum of the 100 chosen numbers is exactly $200$; else it is successful. Prove that the sages can create a strategy, by which they can win the game.

2017 Philippine MO, 3

Each of the numbers in the set \(A = \{1,2, \cdots, 2017\}\) is colored either red or white. Prove that for \(n \geq 18\), there exists a coloring of the numbers in \(A\) such that any of its n-term arithmetic sequences contains both colors.

2023 Estonia Team Selection Test, 4

A $\pm 1$-[i]sequence[/i] is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$

2022 Korea Junior Math Olympiad, 2

For positive integer $n \ge 3$, find the number of ordered pairs $(a_1, a_2, ... , a_n)$ of integers that satisfy the following two conditions [list=disc] [*]For positive integer $i$ such that $1\le i \le n$, $1 \le a_i \le i$ [*]For positive integers $i,j,k$ such that $1\le i < j < k \le n$, if $a_i = a_j$ then $a_j \ge a_k$ [/list]

2007 Indonesia TST, 4

Let $ X$ be a set of $ k$ vertexes on a plane such that no three of them are collinear. Let $ P$ be the family of all $ {k \choose 2}$ segments that connect each pair of points. Determine $ \tau(P)$.

2018 USA Team Selection Test, 3

At a university dinner, there are 2017 mathematicians who each order two distinct entrées, with no two mathematicians ordering the same pair of entrées. The cost of each entrée is equal to the number of mathematicians who ordered it, and the university pays for each mathematician's less expensive entrée (ties broken arbitrarily). Over all possible sets of orders, what is the maximum total amount the university could have paid? [i]Proposed by Evan Chen[/i]

1988 Tournament Of Towns, (171) 4

We have a set of weights with masses $1$ gm, $2$ gm, $4$ gm and so on, all values being powers of $2$ . Some of these weights may have equal mass. Some weights were put on both sides of a balance beam, resulting in equilibrium. It is known that on the left hand side all weights were distinct . Prove that on the right hand side there were no fewer weights than on the left hand side.

1997 Spain Mathematical Olympiad, 6

The exact quantity of gas needed for a car to complete a single loop around a track is distributed among $n$ containers placed along the track. Prove that there exists a position starting at which the car, beginning with an empty tank of gas, can complete a loop around the track without running out of gas. The tank of gas is assumed to be large enough.