Found problems: 8
2013 Bogdan Stan, 4
Consider $ 16 $ pairwise distinct natural numbers smaller than $ 1597. $
[b]a)[/b] Prove that among these, there are three numbers having the property that the sum of any two of them is bigger than the third.
[b]b)[/b] If one of these numbers is $ 1597, $ is still true the fact from subpoint [b]a)[/b]?
[i]Teodor Radu[/i]
2021 Science ON all problems, 3
Let $m,n\in \mathbb{Z}_{\ge 1}$ and a rectangular board $m\times n$ sliced by parallel lines to the rectangle's sides into $mn$ unit squares. At moment $t=0$, there is an ant inside every square, positioned exactly in its centre, such that it is oriented towards one of the rectangle's sides. Every second, all the ants move exactly a unit following their current orientation; however, if two ants meet at the centre of a unit square, both of them turn $180^o$ around (the turn happens instantly, without any loss of time) and the next second they continue their motion following their new orientation. If two ants meet at the midpoint of a side of a unit square, they just continue moving, without changing their orientation.\\ \\
Prove that, after finitely many seconds, some ant must fall off the table.\\ \\
[i](Oliver Hayman)[/i]
2003 Gheorghe Vranceanu, 4
Prove that among any $ 16 $ numbers smaller than $ 101 $ there are four of them that have the property that the sum of two of them is equal to the sum of the other two.
2020 Indonesia MO, 5
A set $A$ contains exactly $n$ integers, each of which is greater than $1$ and every of their prime factors is less than $10$. Determine the smallest $n$ such that $A$ must contain at least two distinct elements $a$ and $b$ such that $ab$ is the square of an integer.
1994 Bundeswettbewerb Mathematik, 1
Given eleven real numbers, prove that there exist two of them such that their decimal representations agree infinitely often.
2012 USAMO, 2
A circle is divided into $432$ congruent arcs by $432$ points. The points are colored in four colors such that some $108$ points are colored Red, some $108$ points are colored Green, some $108$ points are colored Blue, and the remaining $108$ points are colored Yellow. Prove that one can choose three points of each color in such a way that the four triangles formed by the chosen points of the same color are congruent.
2021 Science ON Seniors, 3
Let $m,n\in \mathbb{Z}_{\ge 1}$ and a rectangular board $m\times n$ sliced by parallel lines to the rectangle's sides into $mn$ unit squares. At moment $t=0$, there is an ant inside every square, positioned exactly in its centre, such that it is oriented towards one of the rectangle's sides. Every second, all the ants move exactly a unit following their current orientation; however, if two ants meet at the centre of a unit square, both of them turn $180^o$ around (the turn happens instantly, without any loss of time) and the next second they continue their motion following their new orientation. If two ants meet at the midpoint of a side of a unit square, they just continue moving, without changing their orientation.\\ \\
Prove that, after finitely many seconds, some ant must fall off the table.\\ \\
[i](Oliver Hayman)[/i]
2020 Tuymaada Olympiad, 7
Several policemen try to catch a thief who has $2m$ accomplices. To that end they place the accomplices under surveillance. In the beginning, the policemen shadow nobody. Every morning each policeman places under his surveillance one of the accomplices. Every evening the thief stops trusting one of his accomplices The thief is caught if by the $m$-th evening some policeman shadows exactly those $m$ accomplices who are still trusted by the thief. Prove that to guarantee the capture of the thief at least $2^m$ policemen are needed.