This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1973 Polish MO Finals, 4

A set of segments with the total length less than $1$ is given on a line. Prove that every set of $n$ points on the line can be translated by a vector of length not exceeding $n/2$, so that all the obtained points are away from the given segments.

2020 Brazil Cono Sur TST, 1

Maria have $14$ days to train for an olympiad. The only conditions are that she cannot train by $3$ consecutive days and she cannot rest by $3$ consecutive days. Determine how many configurations of days(in training) she can reach her goal.

2021 JHMT HS, 9

Let $S=\{ 1,2,3,\dots,26 \}.$ Find the number of ways in which $S$ can be partitioned into thirteen subsets such that the following is satisfied: [list] [*]each subset contains two elements of $S,$ and [*]the positive difference between the elements of a subset is $1$ or $13.$ [/list]

1995 Korea National Olympiad, Day 3

Let $m,n$ be positive integers with $1 \le n < m$. A box is locked with several padlocks which must all be opened to open the box, and which all have different keys. The keys are distributed among $m$ people. Suppose that among these people, no $n$ can open the box, but any $n+1$ can open it. Find the smallest possible number $l$ of locks and then the total number of keys for which this is possible.

2022 Turkey EGMO TST, 2

We are given some three element subsets of $\{1,2, \dots ,n\}$ for which any two of them have at most one common element. We call a subset of $\{1,2, \dots ,n\}$ [i]nice [/i] if it doesn't include any of the given subsets. If no matter how the three element subsets are selected in the beginning, we can add one more element to every 29-element [i]nice [/i] subset while keeping it nice, find the minimum value of $n$.

2019 Turkey MO (2nd round), 3

There are 2019 students in a school, and some of these students are members of different student clubs. Each student club has an advisory board consisting of 12 students who are members of that particular club. An {\em advisory meeting} (for a particular club) can be realized only when each participant is a member of that club, and moreover, each of the 12 students forming the advisory board are present among the participants. It is known that each subset of at least 12 students in this school can realize an advisory meeting for exactly one student club. Determine all possible numbers of different student clubs with exactly 27 members.

1998 Tournament Of Towns, 5

Pinocchio claims that he can divide an isoceles triangle into three triangles, any two of which can be put together to form a new isosceles triangle. Is Pinocchio lying? (A Shapovalov)

2017 ELMO Problems, 5

The edges of $K_{2017}$ are each labeled with $1,2,$ or $3$ such that any triangle has sum of labels at least $5.$ Determine the minimum possible average of all $\dbinom{2017}{2}$ labels. (Here $K_{2017}$ is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.) [i]Proposed by Michael Ma[/i]

2011 Israel National Olympiad, 6

There are $N$ red cards and $N$ blue cards. Each card has a positive integer between $1$ and $N$ (inclusive) written on it. Prove that we can choose a (non-empty) subset of the red cards and a (non-empty) subset of the blue cards, so that the sum of the numbers on the chosen red cards equals the sum of the numbers on the chosen blue cards.

2012 Serbia National Math Olympiad, 2

Let $\mathbb{K}$ be two-dimensional integer lattice. Is there a bijection $f:\mathbb{N} \rightarrow \mathbb{K}$, such that for every distinct $a,b,c \in \mathbb{N}$ we have: \[\gcd(a,b,c)>1 \Rightarrow f(a),f(b),f(c) \mbox{ are not colinear? }\]

2012 Dutch BxMO/EGMO TST, 5

Let $A$ be a set of positive integers having the following property: for each positive integer $n$ exactly one of the three numbers $n, 2n$ and $3n$ is an element of $A$. Furthermore, it is given that $2 \in A$. Prove that $13824 \notin A$.

1989 India National Olympiad, 3

Let $ A$ denote a subset of the set $ \{ 1,11,21,31, \dots ,541,551 \}$ having the property that no two elements of $ A$ add up to $ 552$. Prove that $ A$ can't have more than $ 28$ elements.

2022 Princeton University Math Competition, A5 / B7

An [i]$n$-folding process[/i] on a rectangular piece of paper with sides aligned vertically and horizontally consists of repeating the following process $n$ times: [list] [*]Take the piece of paper and fold it in half vertically (choosing to either fold the right side over the left, or the left side over the right). [*]Rotate the paper $90^\circ$ clockwise. [/list] A $10$-folding process is performed on a piece of paper, resulting in a $1$-by-$1$ square base consisting of many stacked layers of paper. Let $d(i,j)$ be the Euclidean distance between the center of the $i$th square from the top and the center of the $j$th square from the top when the paper is unfolded. Determine the maximum possible value of $\sum_{i=1}^{1023} d(i, i+1).$

1947 Moscow Mathematical Olympiad, 139

In the numerical triangle $................1..............$ $...........1 ...1 ...1.........$ $......1... 2... 3 ... 2 ... 1....$ $.1...3...6...7...6...3...1$ $...............................$ each number is equal to the sum of the three nearest to it numbers from the row above it; if the number is at the beginning or at the end of a row then it is equal to the sum of its two nearest numbers or just to the nearest number above it (the lacking numbers above the given one are assumed to be zeros). Prove that each row, starting with the third one, contains an even number.

2014 Indonesia Juniors, day 2

p1. Nurbaya's rectangular courtyard will be covered by a number of paving blocks in the form of a regular hexagon or its pieces like the picture below. The length of the side of the hexagon is $ 12$ cm. [img]https://cdn.artofproblemsolving.com/attachments/6/1/281345c8ee5b1e80167cc21ad39b825c1d8f7b.png[/img] Installation of other paving blocks or pieces thereof so that all fully covered page surface. To cover the entire surface The courtyard of the house required $603$ paving blocks. How many paving blocks must be cut into models $A, B, C$, and $D$ for the purposes of closing. If $17$ pieces of model $A$ paving blocks are needed, how many the length and width of Nurbaya's yard? Count how much how many pieces of each model $B, C$, and $D$ paving blocks are used. p2. Given the square $PQRS$. If one side lies on the line $y = 2x - 17$ and its two vertices lie on the parabola $y = x^2$, find the maximum area of possible squares $PQRS$ . p3. In the triangular pyramid $T.ABC$, the points $E, F, G$, and $H$ lie at , respectively $AB$, $AC$, $TC$, and $TB$ so that $EA : EB = FA : FC = HB : HT = GC : GT = 2:1$. Determine the ratio of the volumes of the two halves of the divided triangular pyramid by the plane $EFGH$. p4. We know that $x$ is a non-negative integer and $y$ is an integer. Define all pair $(x, y)$ that satisfy $1 + 2^x + 2^{2x + 1} = y^2$. p5. The coach of the Indonesian basketball national team will select the players for become a member of the core team. The coach will judge five players $A, B, C, D$ and $E$ in one simulation (or trial) match with total time $80$ minute match. At any time there is only one in five players that is playing. There is no limit to the number of substitutions during the match. Total playing time for each player $A, B$, and $C$ are multiples of $5$ minutes, while the total playing time of each players $D$ and $E$ are multiples of $7$ minutes. How many ways each player on the field based on total playing time?

2000 Croatia National Olympiad, Problem 4

Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.

2016 Belarus Team Selection Test, 4

There is a graph with 30 vertices. If any of 26 of its vertices with their outgoiing edges are deleted, then the remained graph is a connected graph with 4 vertices. What is the smallest number of the edges in the initial graph with 30 vertices?

2016 Saudi Arabia Pre-TST, 1.3

A lock has $16$ keys arranged in a $4\times 4$ array, each key oriented either horizontally or vertically. In order to open it, all the keys must be vertically oriented. When a key is switched to another position, all the other keys in the same row and column automatically switch their positions too. Show that no matter what the starting positions are, it is always possible to open this lock. (Only one key at a time can be switched.)

2006 Germany Team Selection Test, 3

Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called [i]adjacent[/i] if they have a common edge, and a [i]path[/i] is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called [i]non-intersecting[/i] if they don't share any common squares. Each unit square of the rectangular board can be colored black or white. We speak of a [i]coloring[/i] of the board if all its $mn$ unit squares are colored. Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge. Prove that $N^{2}\geq M\cdot 2^{mn}$.

2009 Romania Team Selection Test, 2

Consider a matrix whose entries are integers. Adding a same integer to all entries on a same row, or on a same column, is called an operation. It is given that, for infinitely many positive integers $n$, one can obtain, through a finite number of operations, a matrix having all entries divisible by $n$. Prove that, through a finite number of operations, one can obtain the null matrix.

2014 IMO Shortlist, C9

There are $n$ circles drawn on a piece of paper in such a way that any two circles intersect in two points, and no three circles pass through the same point. Turbo the snail slides along the circles in the following fashion. Initially he moves on one of the circles in clockwise direction. Turbo always keeps sliding along the current circle until he reaches an intersection with another circle. Then he continues his journey on this new circle and also changes the direction of moving, i.e. from clockwise to anticlockwise or $\textit{vice versa}$. Suppose that Turbo’s path entirely covers all circles. Prove that $n$ must be odd. [i]Proposed by Tejaswi Navilarekallu, India[/i]

1995 All-Russian Olympiad Regional Round, 9.4

Every side and diagonal of a regular $12$-gon is colored in one of $12$ given colors. Can this be done in such a way that, for every three colors, there exist three vertices which are connected to each other by segments of these three colors?

2012 Korea National Olympiad, 2

There are $n$ students $ A_1 , A_2 , \cdots , A_n $ and some of them shaked hands with each other. ($ A_i $ and $ A_j$ can shake hands more than one time.) Let the student $ A_i $ shaked hands $ d_i $ times. Suppose $ d_1 + d_2 + \cdots + d_n > 0 $. Prove that there exist $ 1 \le i < j \le n $ satisfying the following conditions: (a) Two students $ A_i $ and $ A_j $ shaked hands each other. (b) $ \frac{(d_1 + d_2 + \cdots + d_n ) ^2 }{n^2 } \le d_i d_j $

2014 Contests, 3a

A grasshopper is jumping about in a grid. From the point with coordinates $(a, b)$ it can jump to either $(a + 1, b),(a + 2, b),(a + 1, b + 1),(a, b + 2)$ or $(a, b + 1)$. In how many ways can it reach the line $x + y = 2014?$ Where the grasshopper starts in $(0, 0)$.

2022 Harvard-MIT Mathematics Tournament, 8

Random sequences $a_1, a_2, . . .$ and $b_1, b_2, . . .$ are chosen so that every element in each sequence is chosen independently and uniformly from the set $\{0, 1, 2, 3, . . . , 100\}$. Compute the expected value of the smallest nonnegative integer $s$ such that there exist positive integers $m$ and $n$ with $$s =\sum^m_{i=1} a_i =\sum^n_{j=1}b_j .$$