Found problems: 351
2014 Contests, 2 juniors
Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be a point on the line $AB$, distinct from $B$, such that $|CG| = |CB|$. Let $H$ be a point on the line $BC$, distinct from $B$, such that $|AB| =|AH|$. Prove that triangle $DGH$ is isosceles.
[asy]
unitsize(1.5 cm);
pair A, B, C, D, G, H;
A = (0,0);
B = (2,0);
D = (0.5,1.5);
C = B + D - A;
G = reflect(A,B)*(C) + C - B;
H = reflect(B,C)*(H) + A - B;
draw(H--A--D--C--G);
draw(interp(A,G,-0.1)--interp(A,G,1.1));
draw(interp(C,H,-0.1)--interp(C,H,1.1));
draw(D--G--H--cycle, dashed);
dot("$A$", A, SW);
dot("$B$", B, SE);
dot("$C$", C, E);
dot("$D$", D, NW);
dot("$G$", G, NE);
dot("$H$", H, SE);
[/asy]
2017 Bosnia And Herzegovina - Regional Olympiad, 2
Let $ABC$ be an isosceles triangle such that $AB=AC$. Find angles of triangle $ABC$ if
$\frac{AB}{BC}=1+2\cos{\frac{2\pi}{7}}$
Estonia Open Junior - geometry, 2013.2.3
In an isosceles right triangle $ABC$ the right angle is at vertex $C$. On the side $AC$ points $K, L$ and on the side $BC$ points $M, N$ are chosen so that they divide the corresponding side into three equal segments. Prove that there is exactly one point $P$ inside the triangle $ABC$ such that $\angle KPL = \angle MPN = 45^o$.
2005 BAMO, 2
Prove that if two medians in a triangle are equal in length, then the triangle is isosceles.
(Note: A median in a triangle is a segment which connects a vertex of the triangle to the midpoint of the opposite side of the triangle.)
Kyiv City MO Juniors 2003+ geometry, 2012.7.4
Given an isosceles triangle $ABC$ with a vertex at the point $B$. Based on $AC$, an arbitrary point $D $ is selected, different from the vertices $A$ and $C $. On the line $AC $ select the point $E $ outside the segment $AC$, for which $AE = CD$. Prove that the perimeter $\Delta BDE$ is larger than the perimeter $\Delta ABC$.
1996 Spain Mathematical Olympiad, 2
Let $G$ be the centroid of a triangle $ABC$. Prove that if $AB+GC = AC+GB$, then the triangle is isosceles
Swiss NMO - geometry, 2017.8
Let $ABC$ be an isosceles triangle with vertex $A$ and $AB> BC$. Let $k$ be the circle with center $A$ passsing through $B$ and $C$. Let $H$ be the second intersection of $k$ with the altitude of the triangle $ABC$ through $B$. Further let $G$ be the second intersection of $k$ with the median through $B$ in triangle $ABC$. Let $X$ be the intersection of the lines $AC$ and $GH$. Show that $C$ is the midpoint of $AX$.
2012 Sharygin Geometry Olympiad, 5
Let $ABC$ be an isosceles right-angled triangle. Point $D$ is chosen on the prolongation of the hypothenuse $AB$ beyond point $A$ so that $AB = 2AD$. Points $M$ and $N$ on side $AC$ satisfy the relation $AM = NC$. Point $K$ is chosen on the prolongation of $CB$ beyond point $B$ so that $CN = BK$. Determine the angle between lines $NK$ and $DM$.
(M.Kungozhin)
1997 Argentina National Olympiad, 2
Let $ABC$ be a triangle and $M$ be the midpoint of $AB$. If it is known that $\angle CAM + \angle MCB = 90^o$, show that triangle $ABC$ is isosceles or right.
2009 Bosnia And Herzegovina - Regional Olympiad, 4
Let $C$ be a circle with center $O$ and radius $R$. From point $A$ of circle $C$ we construct a tangent $t$ on circle $C$. We construct line $d$ through point $O$ whch intersects tangent $t$ in point $M$ and circle $C$ in points $B$ and $D$ ($B$ lies between points $O$ and $M$). If $AM=R\sqrt{3}$, prove:
$a)$ Triangle $AMD$ is isosceles
$b)$ Circumcenter of $AMD$ lies on circle $C$
1999 Bundeswettbewerb Mathematik, 3
In the plane are given a segment $AC$ and a point $B$ on the segment. Let us draw the positively oriented isosceles triangles $ABS_1, BCS_2$, and $CAS_3$ with the angles at $S_1,S_2,S_3$ equal to $120^o$. Prove that the triangle $S_1S_2S_3$ is equilateral.
2019 Durer Math Competition Finals, 4
Let $ABC$ be an acute-angled triangle having angles $\alpha,\beta,\gamma$ at vertices $A, B, C$ respectively. Let isosceles triangles $BCA_1, CAB_1, ABC_1$ be erected outwards on its sides, with apex angles $2\alpha ,2\beta ,2\gamma$ respectively. Let $A_2$ be the intersection point of lines $AA_1$ and $B_1C_1$ and let us define points $B_2$ and $C_2$ analogously. Find the exact value of the expression $$\frac{AA_1}{A_2A_1}+\frac{BB_1}{B_2B_1}+\frac{CC_1}{C_2C_1}$$
Novosibirsk Oral Geo Oly VIII, 2022.5
Two isosceles triangles of the same area are located as shown in the figure. Find the angle $x$.
[img]https://cdn.artofproblemsolving.com/attachments/a/6/f7dbfd267274781b67a5f3d5a9036fb2905156.png[/img]
2017 Oral Moscow Geometry Olympiad, 2
An isosceles trapezoid $ABCD$ with bases $BC$ and $AD$ is given. Circles with centers $O_1$ and $O_2$ are inscribed in triangles $ABC$ and $ABD$. Prove that line $O_1O_2$ is perpendicular on $BC$.
2022 Grand Duchy of Lithuania, 3
The center $O$ of the circle $\omega$ passing through the vertex $C$ of the isosceles triangle $ABC$ ($AB = AC$) is the interior point of the triangle $ABC$. This circle intersects segments $BC$ and $AC$ at points $D \ne C$ and $E \ne C$, respectively, and the circumscribed circle $\Omega$ of the triangle $AEO$ at the point $F \ne E$. Prove that the center of the circumcircle of the triangle $BDF$ lies on the circle $\Omega$.
2014 Sharygin Geometry Olympiad, 1
The vertices and the circumcenter of an isosceles triangle lie on four different sides of a square. Find the angles of this triangle.
(I. Bogdanov, B. Frenkin)
2004 Dutch Mathematical Olympiad, 4
Two circles $C_1$ and $C_2$ touch each other externally in a point $P$. At point $C_1$ there is a point $Q$ such that the tangent line in $Q$ at $C_1$ intersects the circle $C_2$ at points $A$ and $B$. The line $QP$ still intersects $C_2$ at point $C$.
Prove that triangle $ABC$ is isosceles.
2023 Dutch IMO TST, 3
The center $O$ of the circle $\omega$ passing through the vertex $C$ of the isosceles triangle $ABC$ ($AB = AC$) is the interior point of the triangle $ABC$. This circle intersects segments $BC$ and $AC$ at points $D \ne C$ and $E \ne C$, respectively, and the circumscribed circle $\Omega$ of the triangle $AEO$ at the point $F \ne E$. Prove that the center of the circumcircle of the triangle $BDF$ lies on the circle $\Omega$.
2014 Romania National Olympiad, 2
Outside the square $ABCD$, the rhombus $BCMN$ is constructed with angle $BCM$ obtuse . Let $P$ be the intersection point of the lines $BM$ and $AN$ . Prove that $DM \perp CP$ and the triangle $DPM$ is right isosceles .
Indonesia MO Shortlist - geometry, g4
Given an isosceles triangle $ABC$ with $AB = AC$, suppose $D$ is the midpoint of the $AC$. The circumcircle of the $DBC$ triangle intersects the altitude from $A$ at point $E$ inside the triangle $ABC$, and the circumcircle of the triangle $AEB$ cuts the side $BD$ at point $F$. If $CF$ cuts $AE$ at point $G$, prove that $AE = EG$.
1997 Abels Math Contest (Norwegian MO), 2b
Let $A,B,C$ be different points on a circle such that $AB = AC$. Point $E$ lies on the segment $BC$, and $D \ne A$ is the intersection point of the circle and line $AE$. Show that the product $AE \cdot AD$ is independent of the choice of $E$.
1999 Junior Balkan Team Selection Tests - Moldova, 2
Let $ABC$ be an isosceles right triangle with $\angle A=90^o$. Point $D$ is the midpoint of the side $[AC]$, and point $E \in [AC]$ is so that $EC = 2AE$. Calculate $\angle AEB + \angle ADB$ .
2012 Estonia Team Selection Test, 4
Let $ABC$ be a triangle where $|AB| = |AC|$. Points $P$ and $Q$ are different from the vertices of the triangle and lie on the sides $AB$ and $AC$, respectively. Prove that the circumcircle of the triangle $APQ$ passes through the circumcenter of $ABC$ if and only if $|AP| = |CQ|$.
2005 JBMO Shortlist, 4
Let $ABC$ be an isosceles triangle $(AB=AC)$ so that $\angle A< 2 \angle B$ . Let $D,Z $ points on the extension of height $AM$ so that $\angle CBD = \angle A$ and $\angle ZBA = 90^\circ$. Let $E$ the orthogonal projection of $M$ on height $BF$, and let $K$ the orthogonal projection of $Z$ on $AE$. Prove that $ \angle KDZ = \angle KDB = \angle KZB$.
2021 Irish Math Olympiad, 2
An isosceles triangle $ABC$ is inscribed in a circle with $\angle ACB = 90^o$ and $EF$ is a chord of the circle such that neither E nor $F$ coincide with $C$. Lines $CE$ and $CF$ meet $AB$ at $D$ and $G$ respectively. Prove that $|CE|\cdot |DG| = |EF| \cdot |CG|$.