This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2020 EGMO, 4

A permutation of the integers $1, 2, \ldots, m$ is called [i]fresh[/i] if there exists no positive integer $k < m$ such that the first $k$ numbers in the permutation are $1, 2, \ldots, k$ in some order. Let $f_m$ be the number of fresh permutations of the integers $1, 2, \ldots, m$. Prove that $f_n \ge n \cdot f_{n - 1}$ for all $n \ge 3$. [i]For example, if $m = 4$, then the permutation $(3, 1, 4, 2)$ is fresh, whereas the permutation $(2, 3, 1, 4)$ is not.[/i]

2001 Dutch Mathematical Olympiad, 5

If you take a subset of $4002$ numbers from the whole numbers $1$ to $6003$, then there is always a subset of $2001$ numbers within that subset with the following property: If you order the $2001$ numbers from small to large, the numbers are alternately even and odd (or odd and even). Prove this.

2015 Auckland Mathematical Olympiad, 4

In the planetary system of the star Zoolander there are $2015$ planets. On each planet an astronomer lives who observes the closest planet into his telescope (the distances between planets are all different). Prove that there is a planet who is observed by nobody.

2019 Stars of Mathematics, 3

On a board the numbers $(n-1, n, n+1)$ are written where $n$ is positive integer. On a move choose 2 numbers $a$ and $b$, delete them and write $2a-b$ and $2b-a$. After a succession of moves, on the board there are 2 zeros. Find all possible values for $n$. Proposed by Andrei Eckstein

1987 Kurschak Competition, 3

Any two members of a club with $3n+1$ people plays ping-pong, tennis or chess with each other. Everyone has exactly $n$ partners who plays ping-pong, $n$ who play tennis and $n$ who play chess. Prove that we can choose three members of the club who play three different games amongst each other.

1997 Turkey MO (2nd round), 3

Let $n$ and $k$ be positive integers, where $n > 1$ is odd. Suppose $n$ voters are to elect one of the $k$ cadidates from a set $A$ according to the rule of "majoritarian compromise" described below. After each voter ranks the candidates in a column according to his/her preferences, these columns are concatenated to form a $k$ x $n$ voting matrix. We denote the number of ccurences of $a \in A$ in the $i$-th row of the voting matrix by $a_{i}$ . Let $l_{a}$ stand for the minimum integer $l$ for which $\sum^{l}_{i=1}{a_{i}}> \frac{n}{2}$. Setting $l'= min \{l_{a} | a \in A\}$, we will regard the voting matrices which make the set $\{a \in A | l_{a} = l' \}$ as admissible. For each such matrix, the single candidate in this set will get elected according to majoritarian compromise. Moreover, if $w_{1} \geq w_{2} \geq ... \geq  w_{k} \geq 0$ are given, for each admissible voting matrix, $\sum^{k}_{i=1}{w_{i}a_{i}}$ is called the total weighted score of $a \in A$. We will say that the system $(w_{1},w_{2}, . . . , w_{k})$ of weights represents majoritarian compromise if the total score of the elected candidate is maximum among the scores of all candidates. (a) Determine whether there is a system of weights representing majoritarian compromise if $k = 3$. (b) Show that such a system of weights does not exist for $k > 3$.

1997 Greece Junior Math Olympiad, 4

Consider ten concentric circles and ten rays as in the following figure. At the points where the inner circle is intersected by the rays write successively, in direction clockwise, the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$. In the next circle we write the numbers $11, 12, 13, 14, 15, 16, 17, 18, 19,20$ successively, and so on successively until the last round were we write the numbers $91, 92, 93, 94, 95, 96, 97, 98, 99, 100$ successively. In this orde, the numbers $1, 11, 21, 31, 41, 51, 61, 71, 81, 91$ are in the same ray, and similarly for the other rays. In front of $50$ of those $100$ numbers, we use the sign ''$-$'' such as: a) in each of the ten rays, exist exactly $5$ signs ''$-$'' , and also b) in each of the ten concentric circles, to be exactly $5$ signs ''$-$''. Prove that the sum of the $100$ signed numbers that occur, equals zero. [img]https://cdn.artofproblemsolving.com/attachments/9/d/ffee6518fcd1b996c31cf06d0ce484a821b4ae.gif[/img]

2025 Harvard-MIT Mathematics Tournament, 1

Compute the number of ways to arrange the numbers $1, 2, 3, 4, 5, 6,$ and $7$ around a circle such that the product of every pair of adjacent numbers on the circle is at most $20.$ (Rotations and reflections count as different arrangements.)

2001 Croatia Team Selection Test, 1

Consider $A = \{1, 2, ..., 16\}$. A partition of $A$ into nonempty sets $A_1, A_2,..., A_n$ is said to be good if none of the Ai contains elements $a, b, c$ (not necessarily distinct) such that $a = b + c$. (a) Find a good partition $\{A_1, A_2, A_3, A_4\}$ of $A$. (b) Prove that no partition $\{A_1, A_2, A_3\}$ of $A$ is good

2011 Junior Balkan MO, 3

Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into $n^2$ smaller congruent equilateral triangles (with sides parallel to its sides). Let $m$ be the number of rhombuses that contain two small equilateral triangles and $d$ the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of $n$.

2024 Israel TST, P2

A positive integer $N$ is given. Panda builds a tree on $N$ vertices, and writes a real number on each vertex, so that $1$ plus the number written on each vertex is greater or equal to the average of the numbers written on the neighboring vertices. Let the maximum number written be $M$ and the minimal number written $m$. Mink then gives Panda $M-m$ kilograms of bamboo. What is the maximum amount of bamboo Panda can get?

2022 Taiwan TST Round 2, C

A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or [*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter. [i]Proposed by Aron Thomas[/i]

2025 239 Open Mathematical Olympiad, 4

The numbers from $1$ to $2025$ are arranged in some order in the cells of the $1 \times 2025$ strip. Let's call a [i]flip[/i] an operation that takes two arbitrary cells of a strip and swaps the numbers written in them, but only if the larger of these numbers is located to the left of the smaller one. A [i]flop[/i] is a set of several flips that do not contain common cells that are executed simultaneously. (For example, a simultaneous flip between the 2nd and 8th cells and a flip between the 5th and 101st cells.) Prove that there exists a sequence of $66$ flops such that for any initial arrangement, applying this sequence of flops to it will result in the numbers being ordered from left to right in ascending order.

2021 LMT Spring, B14

In the expansion of $(2x +3y)^{20}$, find the number of coefficients divisible by $144$. [i]Proposed by Hannah Shen[/i]

2020 Saint Petersburg Mathematical Olympiad, 7.

The exam has $25$ topics, each of which has $8$ questions. On a test, there are $4$ questions of different topics. Is it possible to make $50$ tests so that each question was asked exactly once, and for any two topics there is a test where are questions of both topics?

2013 National Olympiad First Round, 24

$77$ stones weighing $1,2,\dots, 77$ grams are divided into $k$ groups such that total weights of each group are different from each other and each group contains less stones than groups with smaller total weights. For how many $k\in \{9,10,11,12\}$, is such a division possible? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None of above} $

2007 Argentina National Olympiad, 4

$10$ real numbers are given $a_1,a_2,\ldots ,a_{10} $, and the $45$ sums of two of these numbers are formed $a_i+a_j $, $1\leq i&lt;j\leq 10$ . It is known that not all these sums are integers. Determine the minimum value of $k$ such that it is possible that among the $45$ sums there are $k$ that are not integers and $45-k$ that are integers.

1988 IMO Longlists, 81

There are $ n \geq 3$ job openings at a factory, ranked $1$ to $ n$ in order of increasing pay. There are $ n$ job applicants, ranked from $1$ to $ n$ in order of increasing ability. Applicant $ i$ is qualified for job $ j$ if and only if $ i \geq j.$ The applicants arrive one at a time in random order. Each in turn is hired to the highest-ranking job for which he or she is qualified AND which is lower in rank than any job already filled. (Under these rules, job $1$ is always filled, and hiring terminates thereafter.) Show that applicants $ n$ and $ n \minus{} 1$ have the same probability of being hired.

2022 ABMC, 2022 Dec

[b]p1.[/b] If $A = 0$, $B = 1$, $C = 2$, $...$, $Z = 25$, then what is the sum of $A + B + M+ C$? [b]p2.[/b] Eric is playing Tetris against Bryan. If Eric wins one-fifth of the games he plays and he plays $15$ games, find the expected number of games Eric will win. [b]p3.[/b] What is the sum of the measures of the exterior angles of a regular $2023$-gon in degrees? [b]p4.[/b] If $N$ is a base $10$ digit of $90N3$, what value of $N$ makes this number divisible by $477$? [b]p5.[/b] What is the rightmost non-zero digit of the decimal expansion of $\frac{1}{2^{2023}}$ ? [b]p6.[/b] if graphs of $y = \frac54 x + m$ and $y = \frac32 x + n$ intersect at $(16, 27)$, what is the value of $m + n$? [b]p7.[/b] Bryan is hitting the alphabet keys on his keyboard at random. If the probability he spells out ABMC at least once after hitting $6$ keys is $\frac{a}{b^c}$ , for positive integers $a$, $b$, $c$ where $b$, $c$ are both as small as possible, find $a+b+c$. Note that the letters ABMC must be adjacent for it to count: AEBMCC should not be considered as correctly spelling out ABMC. [b]p8.[/b] It takes a Daniel twenty minutes to change a light bulb. It takes a Raymond thirty minutes to change a light bulb. It takes a Bryan forty-five minutes to change a light bulb. In the time that it takes two Daniels, three Raymonds, and one and a half Bryans to change $42$ light bulbs, how many light bulbs could half a Raymond change? Assume half a person can work half as productively as a whole person. [b]p9.[/b] Find the value of $5a + 4b + 3c + 2d + e$ given $a, b, c, d, e$ are real numbers satisfying the following equations: $$a^2 = 2e + 23$$ $$b^2 = 10a - 34$$ $$c^2 = 8b - 23$$ $$d^2 = 6c - 14$$ $$e^2 = 4d - 7.$$ [b]p10.[/b] How many integers between $1$ and $1000$ contain exactly two $1$’s when written in base $2$? [b]p11.[/b] Joe has lost his $2$ sets of keys. However, he knows that he placed his keys in one of his $12$ mailboxes, each labeled with a different positive integer from $1$ to $12$. Joe plans on opening the $2$ mailbox labeled $1$ to see if any of his keys are there. However, a strong gust of wind blows by, opening mailboxes $11$ and $12$, revealing that they are empty. If Joe decides to open one of the mailboxes labeled $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ , or $10$, the probability that he finds at least one of his sets of keys can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find the sum $a + b$. Note that a single mailbox can contain $0$, $1$, or $2$ sets of keys, and the mailboxes his sets of keys were placed in are determined independently at random. [b]p12.[/b] As we all know, the top scientists have recently proved that the Earth is a flat disc. Bob is standing on Earth. If he takes the shortest path to the edge, he will fall off after walking $1$ meter. If he instead turns $90$ degrees away from the shortest path and walks towards the edge, he will fall off after $3$ meters. Compute the radius of the Earth. [b]p13.[/b] There are $999$ numbers that are repeating decimals of the form $0.abcabcabc...$ . The sum of all of the numbers of this form that do not have a $1$ or $2$ in their decimal representation can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$. Find $a + b$. [b]p14.[/b] An ant is crawling along the edges of a sugar cube. Every second, it travels along an edge to another adjacent vertex randomly, interested in the sugar it notices. Unfortunately, the cube is about to be added to some scalding coffee! In $10$ seconds, it must return to its initial vertex, so it can get off and escape. If the probability the ant will avoid a tragic doom can be expressed as $\frac{a}{3^{10}}$ , where $a$ is a positive integer, find $a$. Clarification: The ant needs to be on its initial vertex in exactly $10$ seconds, no more or less. [b]p15.[/b] Raymond’s new My Little Pony: Friendship is Magic Collector’s book arrived in the mail! The book’s pages measure $4\sqrt3$ inches by $12$ inches, and are bound on the longer side. If Raymond keeps one corner in the same plane as the book, what is the total area one of the corners can travel without ripping the page? If the desired area in square inches is $a\pi+b\sqrt{c}$ where $a$, $b$, and $c$ are integers and $c$ is squarefree, find $a + b + c$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 CHMMC (Fall), 2

You have $4$ game pieces, and you play a game against an intelligent opponent who has $6$. The rules go as follows: you distribute your pieces among two points a and b, and your opponent simultaneously does as well (so neither player sees what the other is doing). You win the round if you have more pieces than them on either $a$ or$ b$, and you lose the round if you only draw or have fewer pieces on both. You play the optimal strategy, assuming your opponent will play with the strategy that beats your strategy most frequently. What proportion of the time will you win?

2010 International Zhautykov Olympiad, 1

Positive integers $1,2,...,n$ are written on а blackboard ($n >2$ ). Every minute two numbers are erased and the least prime divisor of their sum is written. In the end only the number 97 remains. Find the least $n$ for which it is possible.

2006 All-Russian Olympiad Regional Round, 11.8

What is the minimum number of cells that can be painted black in white square $300 \times 300$ so that no three black cells form a corner, and after painting any white cell this condition was it violated?

2015 Turkey Team Selection Test, 2

There are $2015$ points on a plane and no two distances between them are equal. We call the closest $22$ points to a point its $neighbours$. If $k$ points share the same neighbour, what is the maximum value of $k$?

2018 Brazil Team Selection Test, 2

Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations: [list=1] [*] Choose any number of the form $2^j$, where $j$ is a non-negative integer, and put it into an empty cell. [*] Choose two (not necessarily adjacent) cells with the same number in them; denote that number by $2^j$. Replace the number in one of the cells with $2^{j+1}$ and erase the number in the other cell. [/list] At the end of the game, one cell contains $2^n$, where $n$ is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of $n$. [i]Proposed by Warut Suksompong, Thailand[/i]

1975 Bundeswettbewerb Mathematik, 4

In the country of Sikinia there are finitely many cities. From each city, exactly three roads go out and each road goes to another Sikinian city. A tourist starts a trip from city $A$ and drives according to the following rule: he turns left at the first city, then right at the next city, and so on, alternately. Show that he will eventually return to $A.$