Found problems: 14842
2000 Taiwan National Olympiad, 3
Consider the set $S=\{ 1,2,\ldots ,100\}$ and the family $\mathcal{P}=\{ T\subset S\mid |T|=49\}$. Each $T\in\mathcal{P}$ is labelled by an arbitrary number from $S$. Prove that there exists a subset $M$ of $S$ with $|M|=50$ such that for each $x\in M$, the set $M\backslash\{ x\}$ is not labelled by $x$.
2005 Nordic, 3
There are $2005$ young people sitting around a large circular table. Of these, at most $668$ are boys. We say that a girl $G$ has a strong position, if, counting from $G$ in either direction, the number of girls is always strictly larger than the number of boys ($G$ is herself included in the count). Prove that there is always a girl in a strong position.
2024 Bundeswettbewerb Mathematik, 4
In Sikinia, there are $2024$ cities. Between some of them there are flight connections, which can be used in either direction. No city has a direct flight to all $2023$ other cities. It is known, however, that there is a positive integer $n$ with the following property: For any $n$ cities in Sikinia, there is another city which is directly connected to all these cities.
Determine the largest possible value of $n$.
2017 HMNT, 6
Consider five-dimensional Cartesian space $R^5 = \{(x_1, x_2, x_3, x_4, x_5) | x_i \in R\}$, and consider the hyperplanes with the following equations:
$\bullet$ $x_i = x_j$ for every $1 \le i < j \le 5$,
$\bullet$ $x_1 + x_2 + x_3 + x_4 + x_5 = -1$,
$\bullet$ $x_1 + x_2 + x_3 + x_4 + x_5 = 0$,
$\bullet$ $x_1 + x_2 + x_3 + x_4 + x_5 = 1$.
Into how many regions do these hyperplanes divide $R^5$ ?
2019 German National Olympiad, 3
In the cartesian plane consider rectangles with sides parallel to the coordinate axes. We say that one rectangle is [i]below[/i] another rectangle if there is a line $g$ parallel to the $x$-axis such that the first rectangle is below $g$, the second one above $g$ and both rectangles do not touch $g$.
Similarly, we say that one rectangle is [i]to the right of[/i] another rectangle if there is a line $h$ parallel to the $y$-axis such that the first rectangle is to the right of $h$, the second one to the left of $h$ and both rectangles do not touch $h$.
Show that any finite set of $n$ pairwise disjoint rectangles with sides parallel to the coordinate axes can be enumerated as a sequence $(R_1,\dots,R_n)$ so that for all indices $i,j$ with $1 \le i<j \le n$ the rectangle $R_i$ is to the right of or below the rectangle $R_j$
2017 LMT, individual
[b]p1.[/b] Find the number of zeroes at the end of $20^{17}$.
[b]p2.[/b] Express $\frac{1}{\sqrt{20} +\sqrt{17}}$ in simplest radical form.
[b]p3.[/b] John draws a square $ABCD$. On side $AB$ he draws point $P$ so that $\frac{BP}{PA}=\frac{1}{20}$ and on side $BC$ he draws point $Q$ such that $\frac{BQ}{QC}=\frac{1}{17}$ . What is the ratio of the area of $\vartriangle PBQ$ to the area of $ABCD$?
[b]p4.[/b] Alfred, Bill, Clara, David, and Emily are sitting in a row of five seats at a movie theater. Alfred and Bill don’t want to sit next to each other, and David and Emily have to sit next to each other. How many arrangements can they sit in that satisfy these constraints?
[b]p5.[/b] Alex is playing a game with an unfair coin which has a $\frac15$ chance of flipping heads and a $\frac45$ chance of flipping tails. He flips the coin three times and wins if he flipped at least one head and one tail. What is the probability that Alex wins?
[b]p6.[/b] Positive two-digit number $\overline{ab}$ has $8$ divisors. Find the number of divisors of the four-digit number $\overline{abab}$.
[b]p7.[/b] Call a positive integer $n$ diagonal if the number of diagonals of a convex $n$-gon is a multiple of the number of sides. Find the number of diagonal positive integers less than or equal to $2017$.
[b]p8.[/b] There are $4$ houses on a street, with $2$ on each side, and each house can be colored one of 5 different colors. Find the number of ways that the houses can be painted such that no two houses on the same side of the street are the same color and not all the houses are different colors.
[b]p9.[/b] Compute $$|2017 -|2016| -|2015-| ... |3-|2-1|| ...||||.$$
[b]p10.[/b] Given points $A,B$ in the coordinate plane, let $A \oplus B$ be the unique point $C$ such that $\overline{AC}$ is parallel to the $x$-axis and $\overline{BC}$ is parallel to the $y$-axis. Find the point $(x, y)$ such that $((x, y) \oplus (0, 1)) \oplus (1,0) = (2016,2017) \oplus (x, y)$.
[b]p11.[/b] In the following subtraction problem, different letters represent different nonzero digits.
$\begin{tabular}{ccccc}
& M & A & T & H \\
- & & H & A & M \\
\hline
& & L & M & T \\
\end{tabular}$
How many ways can the letters be assigned values to satisfy the subtraction problem?
[b]p12.[/b] If $m$ and $n$ are integers such that $17n +20m = 2017$, then what is the minimum possible value of $|m-n|$?
[b]p13. [/b]Let $f(x)=x^4-3x^3+2x^2+7x-9$. For some complex numbers $a,b,c,d$, it is true that $f (x) = (x^2+ax+b)(x^2+cx +d)$ for all complex numbers $x$. Find $\frac{a}{b}+ \frac{c}{d}$.
[b]p14.[/b] A positive integer is called an imposter if it can be expressed in the form $2^a +2^b$ where $a,b$ are non-negative integers and $a \ne b$. How many almost positive integers less than $2017$ are imposters?
[b]p15.[/b] Evaluate the infinite sum $$\sum^{\infty}_{n=1} \frac{n(n +1)}{2^{n+1}}=\frac12 +\frac34+\frac68+\frac{10}{16}+\frac{15}{32}+...$$
[b]p16.[/b] Each face of a regular tetrahedron is colored either red, green, or blue, each with probability $\frac13$ . What is the probability that the tetrahedron can be placed with one face down on a table such that each of the three visible faces are either all the same color or all different colors?
[b]p17.[/b] Let $(k,\sqrt{k})$ be the point on the graph of $y=\sqrt{x}$ that is closest to the point $(2017,0)$. Find $k$.
[b]p18.[/b] Alice is going to place $2016$ rooks on a $2016 \times 2016$ chessboard where both the rows and columns are labelled $1$ to $2016$; the rooks are placed so that no two rooks are in the same row or the same column. The value of a square is the sum of its row number and column number. The score of an arrangement of rooks is the sumof the values of all the occupied squares. Find the average score over all valid configurations.
[b]p19.[/b] Let $f (n)$ be a function defined recursively across the natural numbers such that $f (1) = 1$ and $f (n) = n^{f (n-1)}$. Find the sum of all positive divisors less than or equal to $15$ of the number $f (7)-1$.
[b]p20.[/b] Find the number of ordered pairs of positive integers $(m,n)$ that satisfy
$$gcd \,(m,n)+ lcm \,(m,n) = 2017.$$
[b]p21.[/b] Let $\vartriangle ABC$ be a triangle. Let $M$ be the midpoint of $AB$ and let $P$ be the projection of $A$ onto $BC$. If $AB = 20$, and $BC = MC = 17$, compute $BP$.
[b]p22.[/b] For positive integers $n$, define the odd parent function, denoted $op(n)$, to be the greatest positive odd divisor of $n$. For example, $op(4) = 1$, $op(5) = 5$, and $op(6) =3$. Find $\sum^{256}_{i=1}op(i).$
[b]p23.[/b] Suppose $\vartriangle ABC$ has sidelengths $AB = 20$ and $AC = 17$. Let $X$ be a point inside $\vartriangle ABC$ such that $BX \perp CX$ and $AX \perp BC$. If $|BX^4 -CX^4|= 2017$, the compute the length of side $BC$.
[b]p24.[/b] How many ways can some squares be colored black in a $6 \times 6$ grid of squares such that each row and each column contain exactly two colored squares? Rotations and reflections of the same coloring are considered distinct.
[b]p25.[/b] Let $ABCD$ be a convex quadrilateral with $AB = BC = 2$, $AD = 4$, and $\angle ABC = 120^o$. Let $M$ be the midpoint of $BD$. If $\angle AMC = 90^o$, find the length of segment $CD$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1987 IMO Longlists, 3
A town has a road network that consists entirely of one-way streets that are used for bus routes. Along these routes, bus stops have been set up. If the one-way signs permit travel from bus stop $X$ to bus stop $Y \neq X$, then we shall say [i]$Y$ can be reached from $X$[/i]. We shall use the phrase [i]$Y$ comes after $X$[/i] when we wish to express that every bus stop from which the bus stop $X$ can be reached is a bus stop from which the bus stop $Y$ can be reached, and every bus stop that can be reached from $Y$ can also be reached from $X$. A visitor to this town discovers that if $X$ and $Y$ are any two different bus stops, then the two sentences [i]“$Y$ can be reached from $X$”[/i] and [i]“$Y$ comes after $X$”[/i] have exactly the same meaning in this town. Let $A$ and $B$ be two bus stops. Show that of the following two statements, exactly one is true:
[b] (i)[/b] $B$ can be reached from $A;$
[b] (ii) [/b] $A$ can be reached from $B.$
2017 IMO Shortlist, C8
Let $n$ be a given positive integer. In the Cartesian plane, each lattice point with nonnegative coordinates initially contains a butterfly, and there are no other butterflies. The [i]neighborhood[/i] of a lattice point $c$ consists of all lattice points within the axis-aligned $(2n+1) \times (2n+1)$ square entered at $c$, apart from $c$ itself. We call a butterfly [i]lonely[/i], [i]crowded[/i], or [i]comfortable[/i], depending on whether the number of butterflies in its neighborhood $N$ is respectively less than, greater than, or equal to half of the number of lattice points in $N$. Every minute, all lonely butterflies fly away simultaneously. This process goes on for as long as there are any lonely butterflies. Assuming that the process eventually stops, determine the number of comfortable butterflies at the final state.
2009 Germany Team Selection Test, 1
In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2010 Bosnia And Herzegovina - Regional Olympiad, 4
It is given set with $n^2$ elements $(n \geq 2)$ and family $\mathbb{F}$ of subsets of set $A$, such that every one of them has $n$ elements. Assume that every two sets from $\mathbb{F}$ have at most one common element. Prove that
$i)$ Family $\mathbb{F}$ has at most $n^2+n$ elements
$ii)$ Upper bound can be reached for $n=3$
1994 Abels Math Contest (Norwegian MO), 4a
In a group of $20$ people, each person sends a letter to $10$ of the others.
Prove that there are two persons who send a letter to each other.
2020-IMOC, C3
Sunny wants to send some secret message to usjl. The secret message is a three digit number, where each digit is one digit from $0$ to $9$ (so $000$ is also possibly the secret message). However, when Sunny sends the message to usjl, at most one digit might be altered. Therefore, Sunny decides to send usjl a longer message so that usjl can decipher the message to get the original secret message Sunny wants to send. Sunny and usjl can communicate the strategy beforehand. Show that sending a $4$-digit message does not suffice. Also show that sending a $6$-digit message suffices. If it is deduced that sending a $c$-digit message suffices for some $c>6$, then partial credits may be awarded.
2017 Bundeswettbewerb Mathematik, 1
For which integers $n \geq 4$ is the following procedure possible? Remove one number of the integers $1,2,3,\dots,n+1$ and arrange them in a sequence $a_1,a_2,\dots,a_n$ such that of the $n$ numbers \[ |a_1-a_2|,|a_2-a_3|,\dots,|a_{n-1}-a_n|,|a_n-a_1| \] no two are equal.
V Soros Olympiad 1998 - 99 (Russia), grade7
[b]p1.[/b] Due to the crisis, the salaries of the company's employees decreased by $1/5$. By what percentage should it be increased in order for it to reach its previous value?
[b]p2.[/b] Can the sum of six different positive numbers equal their product?
[b]p3.[/b] Points$ A, B, C$ and $B$ are marked on the straight line. It is known that $AC = a$ and $BP = b$. What is the distance between the midpoints of segments $AB$ and $CB$? List all possibilities.
[b]p4.[/b] Find the last three digits of $625^{19} + 376^{99}$.
[b]p5.[/b] Citizens of five different countries sit at the round table (there may be several representatives from one country). It is known that for any two countries (out of the given five) there will be citizens of these countries sitting next to each other. What is the smallest number of people that can sit at the table?
[b]p6.[/b] Can any rectangle be cut into $1999$ pieces, from which you can form a square?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2019 PUMaC Individual Finals A, B, A1
Given the graph $G$ and cycle $C$ in it, we can perform the following operation: add another vertex $v$ to the graph, connect it to all vertices in $C$ and erase all the edges from $C$. Prove that we cannot perform the operation indefinitely on a given graph.
2012 Tournament of Towns, 3
In a team of guards, each is assigned a different positive integer. For any two guards, the ratio of the two numbers assigned to them is at least $3:1$. A guard assigned the number $n$ is on duty for $n$ days in a row, off duty for $n$ days in a row, back on duty for $n$ days in a row, and so on. The guards need not start their duties on the same day. Is it possible that on any day, at least one in such a team of guards is on duty?
2021-IMOC, C8
Find all positive integers $m,n$ such that the $m \times n$ grid can be tiled with figures formed by deleting one of the corners of a $2 \times 3$ grid.
[i]usjl, ST[/i]
2015 Cono Sur Olympiad, 6
Let $S = \{1, 2, 3, \ldots , 2046, 2047, 2048\}$. Two subsets $A$ and $B$ of $S$ are said to be [i]friends[/i] if the following conditions are true:
[list]
[*] They do not share any elements.
[*] They both have the same number of elements.
[*] The product of all elements from $A$ equals the product of all elements from $B$.
[/list]
Prove that there are two subsets of $S$ that are [i]friends[/i] such that each one of them contains at least $738$ elements.
1992 Baltic Way, 15
Noah has 8 species of animals to fit into 4 cages of the ark. He plans to put species in each cage. It turns out that, for each species, there are at most 3 other species with which it cannot share the accomodation. Prove that there is a way to assign the animals to their cages so that each species shares with compatible species.
2007 Bulgarian Autumn Math Competition, Problem 10.4
Find all pairs of natural numbers $(m,n)$, $m\leq n$, such that there exists a table with $m$ rows and $n$ columns filled with the numbers 1 and 0, satisfying the following property: If in a cell there's a 0 (respectively a 1), then the number of zeros (respectively ones) in the row of this cell is equal to the number of zeros (respectively ones) in the column of this cell.
1988 Tournament Of Towns, (172) 5
Is it possible to cover a plane with circles in such a way that exactly $1988$ circles pass through each point?
( N . Vasiliev)
1988 Tournament Of Towns, (173) 6
The first quadrant of the Cartesian $0-x-y$ plane can be considered to be divided into an infinite set of squares of unit side length, arranged in rows and columns , formed by the axes and lines $x = i$ and $y = j$ , where $i$ and $j$ are non-negative integers. Is it possible to write a natural number $(1,2, 3,...)$ in each square , so that each row and column contains each natural number exactly once?
(V . S . Shevelev)
1993 Romania Team Selection Test, 3
Find all integers $n > 1$ for which there is a set $B$ of $n$ points in the plane such that for any $A \in B$ there are three points $X,Y,Z \in B$ with $AX = AY = AZ = 1$.
2008 Germany Team Selection Test, 2
Find all positive integers $ n$ for which the numbers in the set $ S \equal{} \{1,2, \ldots,n \}$ can be colored red and blue, with the following condition being satisfied: The set $ S \times S \times S$ contains exactly $ 2007$ ordered triples $ \left(x, y, z\right)$ such that:
[b](i)[/b] the numbers $ x$, $ y$, $ z$ are of the same color,
and
[b](ii)[/b] the number $ x \plus{} y \plus{} z$ is divisible by $ n$.
[i]Author: Gerhard Wöginger, Netherlands[/i]
2019 Polish MO Finals, 3
$n\ge 3$ guests met at a party. Some of them know each other but there is no quartet of different guests $a, b, c, d$ such that in pairs $\lbrace a, b \rbrace, \lbrace b, c \rbrace, \lbrace c, d \rbrace, \lbrace d, a \rbrace$ guests know each other but in pairs $\lbrace a, c \rbrace, \lbrace b, d \rbrace$ guests don't know each other. We say a nonempty set of guests $X$ is an [i]ingroup[/i], when guests from $X$ know each other pairwise and there are no guests not from $X$ knowing all guests from $X$. Prove that there are at most $\frac{n(n-1)}{2}$ different ingroups at that party.