Found problems: 14842
2002 Estonia Team Selection Test, 1
The princess wishes to have a bracelet with $r$ rubies and $s$ emeralds arranged in such order that there exist two jewels on the bracelet such that starting with these and enumerating the jewels in the same direction she would obtain identical sequences of jewels. Prove that it is possible to fulfill the princess’s wish if and only if $r$ and $s$ have a common divisor.
2002 All-Russian Olympiad Regional Round, 8.5
The four-digit number written on the board can be replaced by another, adding one to its two adjacent digits, if neither of these digits is not equal to $9$; or, subtracting one from the adjacent two digits, if none of them is equal to $0$. Is it possible using such operations from does the number $1234$ get the number $2002$?
2000 Vietnam Team Selection Test, 3
A collection of $2000$ congruent circles is given on the plane such that no
two circles are tangent and each circle meets at least two other circles.
Let $N$ be the number of points that belong to at least two of the circles.
Find the smallest possible value of $N$.
Mathley 2014-15, 1
A copsychus and a sparrow, each initially located at one of the vertex of a regular polygon with $103$ edges, fly clockwise to another vertex each. The copsychus moves across $\ell$ edges each time while the sparrow moves through$ d$ edges of the polygon, where $\ell \ne d$ are both integers less than $103$. Assume that, during their journeys, the copsychus has stopped at $m$ vertices while sparrow has stopped at $n$ vertices of the polygon, for $m \ge n \ge 3$. Determine the value of $m, n$ given that there is only one common single vertex of the polygon that both of birds have stopped at, and there is only one vertex that neither of the birds have reached.
Vu Thi Khoi, Topo University, Hanoi Mathematics Institute, Vietnam, Hoang Qu6c Vietnam, Hanoi.
2024 Bulgaria MO Regional Round, 11.4
A board $2025 \times 2025$ is filled with the numbers $1, 2, \ldots, 2025$, each appearing exactly $2025$ times. Show that there is a row or column with at least $45$ distinct numbers.
2019 Saudi Arabia JBMO TST, 4
Let $14$ integer numbers are given. Let Hamza writes on the paper the greatest common divisor for each pair of numbers. It occurs that the difference between the biggest and smallest numbers written on the paper is less than $91$. Prove that not all numbers on the paper are different.
Mid-Michigan MO, Grades 10-12, 2010
[b]p1.[/b] Find all solutions $a, b, c, d, e, f, g$ if it is known that they represent distinct digits and satisfy the following:
$\begin{tabular}{ccccccc}
& & & a & b & c & d \\
x & & & & & a & b \\
\hline
& & c & d & b & d & b \\
+ & c & e & b & f & b & \\
\hline
& c & g & a & e & g & b \\
\end{tabular}$
[b]p2.[/b] $5$ numbers are placed on the circle. It is known that the sum of any two neighboring numbers is not divisible by $3$ and the sum of any three consecutive numbers is not divisible by $3$. How many numbers on the circle are divisible by $3$?
[b]p3.[/b] $n$ teams played in a volleyball tournament. Each team played precisely one game with all other teams. If $x_j$ is the number of victories and $y_j$ is the number of losses of the $j$th team, show that $$\sum^n_{j=1}x^2_j=\sum^n_{j=1} y^2_j $$
[b]p4.[/b] Three cars participated in the car race: a Ford $[F]$, a Toyota $[T]$, and a Honda $[H]$. They began the race with $F$ first, then $T$, and $H$ last. During the race, $F$ was passed a total of $3$ times, $T$ was passed $5$ times, and $H$ was passed $8$ times. In what order did the cars finish?
[b]p5.[/b] The side of the square is $4$ cm. Find the sum of the areas of the six half-disks shown on the picture.
[img]https://cdn.artofproblemsolving.com/attachments/c/b/73be41b9435973d1c53a20ad2eb436b1384d69.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Iberoamerican, 3
Let $O$ be a fixed point in the plane. We have $2024$ red points, $2024$ yellow points and $2024$ green points in the plane, where there isn't any three colinear points and all points are distinct from $O$. It is known that for any two colors, the convex hull of the points that are from any of those two colors contains $O$ (it maybe contain it in it's interior or in a side of it). We say that a red point, a yellow point and a green point make a [i]bolivian[/i] triangle if said triangle contains $O$ in its interior or in one of its sides. Determine the greatest positive integer $k$ such that, no matter how such points are located, there is always at least $k$ [i]bolivian[/i] triangles.
2022 Turkey MO (2nd round), 6
In a school with $2022$ students, either a museum trip or a nature trip is organized every day during a holiday. No student participates in the same type of trip twice, and the number of students attending each trip is different. If there are no two students participating in the same two trips together, find the maximum number of trips held.
2017 Kyiv Mathematical Festival, 5
Two players in turn put two or three coins into their own hats (before the game starts, the hats are empty). Each time, after the second player duplicated the move of the first player, they exchange hats. The player wins, if after his move his hat contains one hundred or more coins. Which player has a winning strategy?
2022 Thailand Online MO, 6
Let $n$ and $k$ be positive integers. Chef Kao cuts a circular pizza through $k$ diameters, dividing the pizza into $2k$ equal pieces. Then, he dresses the pizza with $n$ toppings. For each topping, he chooses $k$ consecutive pieces of pizza and puts that topping on all of the chosen pieces. Then, for each piece of pizza, Chef Kao counts the number of distinct toppings on it, yielding $2k$ numbers. Among these numbers, let $m$ and $M$ being the minimum and maximum, respectively. Prove that $m + M = n$.
2025 CMIMC Combo/CS, 7
Alan is bored one day and decides to write down all the divisors of $1260^2$ on a wall. After writing down all of them, he realizes he wrote them on the wrong wall and needs to erase all his work. Every second, he picks a random divisor which is still on the wall and instantly erases it and every number that divides it. What is the expected time it takes for Alan to erase everything on the wall?
2023 Middle European Mathematical Olympiad, 4
Let $c \geq 4$ be an even integer. In some football league, each team has a home uniform and anaway uniform. Every home uniform is coloured in two different colours, and every away uniformis coloured in one colour. A team’s away uniform cannot be coloured in one of the colours fromthe home uniform. There are at most $c$ distinct colours on all of the uniforms. If two teams havethe same two colours on their home uniforms, then they have different colours on their away uniforms. We say a pair of uniforms is clashing if some colour appears on both of them. Suppose that for every team $X$ in the league, there is no team $Y$ in the league such that the home uniform of $X$ is clashing with both uniforms of $Y$. Determine the maximum possible number of teams in the league.
2004 Germany Team Selection Test, 3
We attach to the vertices of a regular hexagon the numbers $1$, $0$, $0$, $0$, $0$, $0$. Now, we are allowed to transform the numbers by the following rules:
(a) We can add an arbitrary integer to the numbers at two opposite vertices.
(b) We can add an arbitrary integer to the numbers at three vertices forming an equilateral triangle.
(c) We can subtract an integer $t$ from one of the six numbers and simultaneously add $t$ to the two neighbouring numbers.
Can we, just by acting several times according to these rules, get a cyclic permutation of the initial numbers? (I. e., we started with $1$, $0$, $0$, $0$, $0$, $0$; can we now get $0$, $1$, $0$, $0$, $0$, $0$, or $0$, $0$, $1$, $0$, $0$, $0$, or $0$, $0$, $0$, $1$, $0$, $0$, or $0$, $0$, $0$, $0$, $1$, $0$, or $0$, $0$, $0$, $0$, $0$, $1$ ?)
2024 Philippine Math Olympiad, P5
Find the largest positive integer $k$ so that any binary string of length $2024$ contains a palindromic substring of length at least $k$.
2020 OMMock - Mexico National Olympiad Mock Exam, 5
A ladder is a non-decreasing sequence $a_1, a_2, \dots, a_{2020}$ of non-negative integers. Diego and Pablo play by turns with the ladder $1, 2, \dots, 2020$, starting with Diego. In each turn, the player replaces an entry $a_i$ by $a_i'<a_i$, with the condition that the sequence remains a ladder. The player who gets $(0, 0, \dots, 0)$ wins. Who has a winning strategy?
[i]Proposed by Violeta Hernández[/i]
MMPC Part II 1996 - 2019, 2005
[b]p1.[/b] Two perpendicular chords intersect in a circle. The lengths of the segments of one chord are $3$ and $4$. The lengths of the segments of the other chord are $6$ and $2$. Find the diameter of the circle.
[b]p2.[/b] Determine the greatest integer that will divide $13,511$, $13,903$ and $14,589$ and leave the same remainder.
[b]p3.[/b] Suppose $A, B$ and $C$ are the angles of the triangle. Show that $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$
[b]p4.[/b] Given the linear fractional transformation $f_1(x) =\frac{2x - 1}{x + 1}$.
Define $f_{n+1}(x) = f_1(f_n(x))$ for $n = 1, 2, 3,...$ .
It can be shown that $f_{35} = f_5$.
(a) Find a function $g$ such that $f_1(g(x)) = g(f_1(x)) = x$.
(b) Find $f_{28}$.
[b]p5.[/b] Suppose $a$ is a complex number such that $a^{10} + a^5 + 1 = 0$. Determine the value of $a^{2005} + \frac{1}{a^{2005}}$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 USA EGMO Team Selection Test, 1
A $3 \times 3$ grid of unit cells is given. A [i]snake of length $k$[/i] is an animal which occupies an ordered $k$-tuple of cells in this grid, say $(s_1, \dots, s_k)$. These cells must be pairwise distinct, and $s_i$ and $s_{i+1}$ must share a side for $i = 1, \dots, k-1$. After being placed in a finite $n \times n$ grid, if the snake is currently occupying $(s_1, \dots, s_k)$ and $s$ is an unoccupied cell sharing a side with $s_1$, the snake can [i]move[/i] to occupy $(s, s_1, \dots, s_{k-1})$ instead. The snake has [i]turned around[/i] if it occupied $(s_1, s_2, \dots, s_k)$ at the beginning, but after a finite number of moves occupies $(s_k, s_{k-1}, \dots, s_1)$ instead.
Find the largest integer $k$ such that one can place some snake of length $k$ in a $3 \times 3$ grid which can turn around.
2020 IMO Shortlist, C7
Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied:
[list]
[*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$;
[*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$.
[/list]
A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.
2021 Iran Team Selection Test, 6
Prove that we can color every subset with $n$ element of a set with $3n$ elements with $8$ colors . In such a way that there are no $3$ subsets $A,B,C$ with the same color where :
$$|A \cap B| \le 1,|A \cap C| \le 1,|B \cap C| \le 1$$
Proposed by [i]Morteza Saghafian[/i] and [i]Amir Jafari[/i]
Kettering MO, 2008
[b]p1.[/b] The case of Mr. Brown, Mr. Potter, and Mr. Smith is investigated. One of them has committed a crime. Everyone of them made two statements.
Mr. Brown: I have not done it. Mr. Potter has not done it.
Mr. Potter: Mr. Brown has not done it. Mr. Smith has done it.
Mr. Smith: I have not done it. Mr. Brown has done it.
It is known that one of them told the truth both times, one lied both times, and one told the truth one time and lied one time. Who has committed the crime?
[b]p2.[/b] Is it possible to draw in a plane $1000001$ circles of the radius $1$ such that every circle touches exactly three other circles?
[b]p3.[/b] Consider a circle of radius $R$ centered at the origin. A particle is “launched” from the $x$-axis at a distance, $d$, from the origin with $0 < d < R$, and at an angle, $\alpha$, with the $x$-axis. The particle is reflected from the boundary of the circle so that the [b]angle of incidence[/b] equals the [b]angle of reflection[/b]. Determine the angle $\alpha$ so that the path of the particle contacts the circle’s interior at exactly eight points. Please note that $\alpha$ should be determined in terms of the qunatities $R$ and $d$.
[img]https://cdn.artofproblemsolving.com/attachments/e/3/b8ef9bb8d1b54c263bf2b68d3de60be5b41ad0.png[/img]
[b]p4.[/b] Is it possible to find four different real numbers such that the cube of every number equals the square of the sum of the three others?
[b]p5. [/b]The Fibonacci sequence $(1, 2, 3, 5, 8, 13, 21, . . .)$ is defined by the following formula:
$f_n = f_{n-2} + f_{n-1}$, where $f_1 = 1$, $f_2 = 2$. Prove that any positive integer can be represented as a sum of different members of the Fibonacci sequence.
[b]p6.[/b] $10,000$ points are arbitrary chosen inside a square of area $1$ m$^2$ . Does there exist a broken line connecting all these points, the length of which is less than $201$ m$^2?
PS. You should use hide for answers.
2016 Latvia Baltic Way TST, 7
In the parliament of Nekurnekadzeme, all activities take place in commissions, which consist of exactly three members. The constitution stipulates that any three commissions must have at least five members. We will call a family of commissions a [i]clique[/i] if every two of them have exactly two members in common, but if any other commission is added to this family, this condition is no longer fulfilled. Prove that two different cliques cannot have more than one commission in common.
2021 Princeton University Math Competition, A6 / B8
Alice, Bob, and Carol are playing a game. Each turn, one of them says one of the $3$ players' names, chosen from {Alice, Bob, Carol} uniformly at random. Alice goes first, Bob goes second, Carol goes third, and they repeat in that order. Let $E$ be the expected number of names that are have been said when, for the first time, all $3$ names have been said twice. If $E = \tfrac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$. (Include the last name to be said twice in your count.)
2011 HMNT, 2
In a game of Fish, R2 and R3 are each holding a positive number of cards so that they are collectively holding a total of $24$ cards. Each player gives an integer estimate for the number of cards he is holding, such that each estimate is an integer between $80\%$ of his actual number of cards and $120\%$ of his actual number of cards, inclusive. Find the smallest possible sum of the two estimates.
2009 Italy TST, 3
Two persons, A and B, set up an incantation contest in which they spell incantations (i.e. a finite sequence of letters) alternately. They must obey the following rules:
i) Any incantation can appear no more than once;
ii) Except for the first incantation, any incantation must be obtained by permuting the letters of the last one before it, or deleting one letter from the last incantation before it;
iii)The first person who cannot spell an incantation loses the contest. Answer the following questions:
a) If A says '$STAGEPREIMO$' first, then who will win?
b) Let $M$ be the set of all possible incantations whose lengths (i.e. the numbers of letters in them) are $2009$ and containing only four letters $A,B,C,D$, each of them appearing at least once. Find the first incantation (arranged in dictionary order) in $M$ such that A has a winning strategy by starting with it.