This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

MOAA Gunga Bowls, 2018

[u]Set 7[/u] [b]p19.[/b] Let circles $\omega_1$ and $\omega_2$, with centers $O_1$ and $O_2$, respectively, intersect at $X$ and $Y$ . A lies on $\omega_1$ and $B$ lies on $\omega_2$ such that $AO_1$ and $BO_2$ are both parallel to $XY$, and $A$ and $B$ lie on the same side of $O_1O_2$. If $XY = 60$, $\angle XAY = 45^o$, and $\angle XBY = 30^o$, then the length of $AB$ can be expressed in the form $\sqrt{a - b\sqrt2 + c\sqrt3}$, where $a, b, c$ are positive integers. Determine $a + b + c$. [b]p20.[/b] If $x$ is a positive real number such that $x^{x^2}= 2^{80}$, find the largest integer not greater than $x^3$. [b]p21.[/b] Justin has a bag containing $750$ balls, each colored red or blue. Sneaky Sam takes out a random number of balls and replaces them all with green balls. Sam notices that of the balls left in the bag, there are $15$ more red balls than blue balls. Justin then takes out $500$ of the balls chosen randomly. If $E$ is the expected number of green balls that Justin takes out, determine the greatest integer less than or equal to $E$. [u]Set 8[/u] These three problems are interdependent; each problem statement in this set will use the answers to the other two problems in this set. As such, let the positive integers $A, B, C$ be the answers to problems $22$, $23$, and $24$, respectively, for this set. [b]p22.[/b] Let $WXYZ$ be a rectangle with $WX =\sqrt{5B}$ and $XY =\sqrt{5C}$. Let the midpoint of $XY$ be $M$ and the midpoint of $YZ$ be $N$. If $XN$ and $W Y$ intersect at $P$, determine the area of $MPNY$ . [b]p23.[/b] Positive integers $x, y, z$ satisfy $$xy \equiv A \,\, (mod 5)$$ $$yz \equiv 2A + C\,\, (mod 7)$$ $$zx \equiv C + 3 \,\, (mod 9).$$ (Here, writing $a \equiv b \,\, (mod m)$ is equivalent to writing $m | a - b$.) Given that $3 \nmid x$, $3 \nmid z$, and $9 | y$, find the minimum possible value of the product $xyz$. [b]p24.[/b] Suppose $x$ and $y$ are real numbers such that $$x + y = A$$ $$xy =\frac{1}{36}B^2.$$ Determine $|x - y|$. [u]Set 9[/u] [b]p25. [/b]The integer $2017$ is a prime which can be uniquely represented as the sum of the squares of two positive integers: $$9^2 + 44^2 = 2017.$$ If $N = 2017 \cdot 128$ can be uniquely represented as the sum of the squares of two positive integers $a^2 +b^2$, determine $a + b$. [b]p26.[/b] Chef Celia is planning to unveil her newest creation: a whole-wheat square pyramid filled with maple syrup. She will use a square flatbread with a one meter diagonal and cut out each of the five polygonal faces of the pyramid individually. If each of the triangular faces of the pyramid are to be equilateral triangles, the largest volume of syrup, in cubic meters, that Celia can enclose in her pyramid can be expressed as $\frac{a-\sqrt{b}}{c}$ where $a, b$ and $c$ are the smallest possible possible positive integers. What is $a + b + c$? [b]p27.[/b] In the Cartesian plane, let $\omega$ be the circle centered at $(24, 7)$ with radius $6$. Points $P, Q$, and $R$ are chosen in the plane such that $P$ lies on $\omega$, $Q$ lies on the line $y = x$, and $R$ lies on the $x$-axis. The minimum possible value of $PQ+QR+RP$ can be expressed in the form $\sqrt{m}$ for some integer $m$. Find m. [u]Set 10[/u] [i]Deja vu?[/i] [b]p28. [/b] Let $ABC$ be a triangle with incircle $\omega$. Let $\omega$ intersect sides $BC$, $CA$, $AB$ at $D, E, F$, respectively. Suppose $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ is $K$ and the area of $DEF$ is $\frac{m}{n}\cdot K$, where $m$ and $n$ are relatively prime positive integers, then compute $m + n$. [b]p29.[/b] Sebastian is playing the game Split! again, but this time in a three dimensional coordinate system. He begins the game with one token at $(0, 0, 0)$. For each move, he is allowed to select a token on any point $(x, y, z)$ and take it off, replacing it with three tokens, one at $(x + 1, y, z)$, one at $(x, y + 1, z)$, and one at $(x, y, z + 1)$ At the end of the game, for a token on $(a, b, c)$, it is assigned a score $\frac{1}{2^{a+b+c}}$ . These scores are summed for his total score. If the highest total score Sebastian can get in $100$ moves is $m/n$, then determine $m + n$. [b]p30.[/b] Determine the number of positive $6$ digit integers that satisfy the following properties: $\bullet$ All six of their digits are $1, 5, 7$, or $8$, $\bullet$ The sum of all the digits is a multiple of $5$. [u]Set 11[/u] [b]p31.[/b] The triangular numbers are defined as $T_n =\frac{n(n+1)}{2}$. We also define $S_n =\frac{n(n+2)}{3}$. If the sum $$\sum_{i=16}^{32} \left(\frac{1}{T_i}+\frac{1}{S_i}\right)= \left(\frac{1}{T_{16}}+\frac{1}{S_{16}}\right)+\left(\frac{1}{T_{17}}+\frac{1}{S_{17}}\right)+...+\left(\frac{1}{T_{32}}+\frac{1}{S_{32}}\right)$$ can be written in the form $a/b$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$, then find $a + b$. [b]p32.[/b] Farmer Will is considering where to build his house in the Cartesian coordinate plane. He wants to build his house on the line $y = x$, but he also has to minimize his travel time for his daily trip to his barnhouse at $(24, 15)$ and back. From his house, he must first travel to the river at $y = 2$ to fetch water for his animals. Then, he heads for his barnhouse, and promptly leaves for the long strip mall at the line $y =\sqrt3 x$ for groceries, before heading home. If he decides to build his house at $(x_0, y_0)$ such that the distance he must travel is minimized, $x_0$ can be written in the form $\frac{a\sqrt{b}-c}{d}$ , where $a, b, c, d$ are positive integers, $b$ is not divisible by the square of a prime, and $gcd(a, c, d) = 1$. Compute $a+b+c+d$. [b]p33.[/b] Determine the greatest positive integer $n$ such that the following two conditions hold: $\bullet$ $n^2$ is the difference of consecutive perfect cubes; $\bullet$ $2n + 287$ is the square of an integer. [u]Set 12[/u] The answers to these problems are nonnegative integers that may exceed $1000000$. You will be awarded points as described in the problems. [b]p34.[/b] The “Collatz sequence” of a positive integer n is the longest sequence of distinct integers $(x_i)_{i\ge 0}$ with $x_0 = n$ and $$x_{n+1} =\begin{cases} \frac{x_n}{2} & if \,\, x_n \,\, is \,\, even \\ 3x_n + 1 & if \,\, x_n \,\, is \,\, odd \end{cases}.$$ It is conjectured that all Collatz sequences have a finite number of elements, terminating at $1$. This has been confirmed via computer program for all numbers up to $2^{64}$. There is a unique positive integer $n < 10^9$ such that its Collatz sequence is longer than the Collatz sequence of any other positive integer less than $10^9$. What is this integer $n$? An estimate of $e$ gives $\max\{\lfloor 32 - \frac{11}{3}\log_{10}(|n - e| + 1)\rfloor, 0\}$ points. [b]p35.[/b] We define a graph $G$ as a set $V (G)$ of vertices and a set $E(G)$ of distinct edges connecting those vertices. A graph $H$ is a subgraph of $G$ if the vertex set $V (H)$ is a subset of $V (G)$ and the edge set $E(H)$ is a subset of $E(G)$. Let $ex(k, H)$ denote the maximum number of edges in a graph with $k$ vertices without a subgraph of $H$. If $K_i$ denotes a complete graph on $i$ vertices, that is, a graph with $i$ vertices and all ${i \choose 2}$ edges between them present, determine $$n =\sum_{i=2}^{2018} ex(2018, K_i).$$ An estimate of $e$ gives $\max\{\lfloor 32 - 3\log_{10}(|n - e| + 1)\rfloor, 0\}$ points. [b]p36.[/b] Write down an integer between $1$ and $100$, inclusive. This number will be denoted as $n_i$ , where your Team ID is $i$. Let $S$ be the set of Team ID’s for all teams that submitted an answer to this problem. For every ordered triple of distinct Team ID’s $(a, b, c)$ such that a, b, c ∈ S, if all roots of the polynomial $x^3 + n_ax^2 + n_bx + n_c$ are real, then the teams with ID’s $a, b, c$ will each receive one virtual banana. If you receive $v_b$ virtual bananas in total and $|S| \ge 3$ teams submit an answer to this problem, you will be awarded $$\left\lfloor \frac{32v_b}{3(|S| - 1)(|S| - 2)}\right\rfloor$$ points for this problem. If $|S| \le 2$, the team(s) that submitted an answer to this problem will receive $32$ points for this problem. PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777264p24369138]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 JBMO Shortlist, 2

In a country with $n$ towns, all the direct flights are of double destinations (back and forth). There are $r>2014$ rootes between different pairs of towns, that include no more than one intermediate stop (direction of each root matters). Find the minimum possible value of $n$ and the minimum possible $r$ for that value of $n$.

2018 Czech-Polish-Slovak Match, 5

In a $2 \times 3$ rectangle there is a polyline of length $36$, which can have self-intersections. Show that there exists a line parallel to two sides of the rectangle, which intersects the other two sides in their interior points and intersects the polyline in fewer than $10$ points. [i]Proposed by Josef Tkadlec, Czechia and Vojtech Bálint, Slovakia[/i]

2010 Romanian Masters In Mathematics, 1

For a finite non empty set of primes $P$, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of $P$. (i) Show that $|P|\le m(P)$, with equality if and only if $\min(P)>|P|$. (ii) Show that $m(P)<(|P|+1)(2^{|P|}-1)$. (The number $|P|$ is the size of set $P$) [i]Dan Schwarz, Romania[/i]

1995 ITAMO, 1

Determine for which values of $n$ it is possible to tile a square of side $n$ with figures of the type shown in the picture [asy] unitsize(0.4 cm); draw((0,0)--(5,0)); draw((0,1)--(5,1)); draw((1,2)--(4,2)); draw((2,3)--(3,3)); draw((0,0)--(0,1)); draw((1,0)--(1,2)); draw((2,0)--(2,3)); draw((3,0)--(3,3)); draw((4,0)--(4,2)); draw((5,0)--(5,1)); [/asy]

2023 Austrian MO National Competition, 3

Alice and Bob play a game, in which they take turns drawing segments of length $1$ in the Euclidean plane. Alice begins, drawing the first segment, and from then on, each segment must start at the endpoint of the previous segment. It is not permitted to draw the segment lying over the preceding one. If the new segment shares at least one point - except for its starting point - with one of the previously drawn segments, one has lost. a) Show that both Alice and Bob could force the game to end, if they don’t care who wins. b) Is there a winning strategy for one of them?

2012 India IMO Training Camp, 3

Suppose that $1000$ students are standing in a circle. Prove that there exists an integer $k$ with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2k$ students, for which the first half contains the same number of girls as the second half. [i]Proposed by Gerhard Wöginger, Austria[/i]

2023 China Team Selection Test, P2

$n$ people attend a party. There are no more than $n$ pairs of friends among them. Two people shake hands if and only if they have at least $1$ common friend. Given integer $m\ge 3$ such that $n\leq m^3$. Prove that there exists a person $A$, the number of people that shake hands with $A$ is no more than $m-1$ times of the number of $A$‘S friends.

Mid-Michigan MO, Grades 7-9, 2013

[b]p1.[/b] A straight line is painted in two colors. Prove that there are three points of the same color such that one of them is located exactly at the midpoint of the interval bounded by the other two. [b]p2.[/b] Find all positive integral solutions $x, y$ of the equation $xy = x + y + 3$. [b]p3.[/b] Can one cut a square into isosceles triangles with angle $80^o$ between equal sides? [b]p4.[/b] $20$ children are grouped into $10$ pairs: one boy and one girl in each pair. In each pair the boy is taller than the girl. Later they are divided into pairs in a different way. May it happen now that (a) in all pairs the girl is taller than the boy; (b) in $9$ pairs out of $10$ the girl is taller than the boy? [b]p5.[/b] Mr Mouse got to the cellar where he noticed three heads of cheese weighing $50$ grams, $80$ grams, and $120$ grams. Mr. Mouse is allowed to cut simultaneously $10$ grams from any two of the heads and eat them. He can repeat this procedure as many times as he wants. Can he make the weights of all three pieces equal? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 Finnish National High School Mathematics Competition, 4

Convex figure $\mathcal{K}$ has the following property: if one looks at $\mathcal{K}$ from any point of the certain circle $\mathcal{Y}$, then $\mathcal{K}$ is seen in the right angle. Show that the figure is symmetric with respect to the centre of $\mathcal{Y.}$

2022/2023 Tournament of Towns, P6

It is known that among several banknotes of pairwise distinct face values (which are positive integers) there are exactly $N{}$ fakes. In a single test, a detector determines the sum of the face values of all real banknotes in an arbitrary set we have selected. Prove that by using the detector $N{}$ times, all fake banknotes can be identified, if a) $N=2$ and b) $N=3$. [i]Proposed by S. Tokarev[/i]

2010 China Team Selection Test, 3

An (unordered) partition $P$ of a positive integer $n$ is an $n$-tuple of nonnegative integers $P=(x_1,x_2,\cdots,x_n)$ such that $\sum_{k=1}^n kx_k=n$. For positive integer $m\leq n$, and a partition $Q=(y_1,y_2,\cdots,y_m)$ of $m$, $Q$ is called compatible to $P$ if $y_i\leq x_i$ for $i=1,2,\cdots,m$. Let $S(n)$ be the number of partitions $P$ of $n$ such that for each odd $m<n$, $m$ has exactly one partition compatible to $P$ and for each even $m<n$, $m$ has exactly two partitions compatible to $P$. Find $S(2010)$.

1984 All Soviet Union Mathematical Olympiad, 391

The white fields of $3x3$ chess-board are filled with either $+1$ or $-1$. For every field, let us calculate the product of neighbouring numbers. Then let us change all the numbers by the respective products. Prove that we shall obtain only $+1$'s, having repeated this operation finite number of times.

2024 JHMT HS, 1

Compute the number of squares of positive area whose vertices all are points on the grid shown below. [asy] unitsize(1cm); dot((0,0)); dot((1,0)); dot((2,0)); dot((3,0)); dot((0,1)); dot((1,1)); dot((2,1)); dot((3,1)); dot((0,2)); dot((1,2)); dot((2,2)); dot((3,2)); dot((0,3)); dot((1,3)); dot((2,3)); dot((3,3)); [/asy]

1995 Israel Mathematical Olympiad, 7

For certain $n$ countries there is an airline connecting any two countries, but some of the airlines are closed. Show that if the number of the closed airlines does not exceed $n-3$, then one can make a round trip using the remaining airlines, starting from one of the countries, visiting every country exactly once and returning to the starting country.

2019 Tournament Of Towns, 7

Peter has a wooden square stamp divided into a grid. He coated some $102$ cells of this grid with black ink. After that, he pressed this stamp $100$ times on a list of paper so that each time just those $102$ cells left a black imprint on the paper. Is it possible that after his actions the imprint on the list is a square $101 \times 101$ such that all the cells except one corner cell are black? (Alexsandr Gribalko)

2015 Iran Team Selection Test, 5

We call a permutation $(a_1, a_2,\cdots , a_n)$ of the set $\{ 1,2,\cdots, n\}$ "good" if for any three natural numbers $i <j <k$, $n\nmid a_i+a_k-2a_j$ find all natural numbers $n\ge 3$ such that there exist a "good" permutation of a set $\{1,2,\cdots, n\}$.

2019 PUMaC Combinatorics B, 4

Keith has $10$ coins labeled $1$ through $10$, where the $i$th coin has weight $2^i$. The coins are all fair, so the probability of flipping heads on any of the coins is $\tfrac{1}{2}$. After flipping all of the coins, Keith takes all of the coins which land heads and measures their total weight, $W$. If the probability that $137\le W\le 1061$ is $\tfrac{m}{n}$ for coprime positive integers $m,n$, determine $m+n$.

2011 Tournament of Towns, 2

Several guests at a round table are eating from a basket containing $2011$ berries. Going in clockwise direction, each guest has eaten either twice as many berries as or six fewer berries than the next guest. Prove that not all the berries have been eaten.

2018 ABMC, Team

[u]Round 1[/u] [b]1.1.[/b] What is the area of a circle with diameter $2$? [b]1.2.[/b] What is the slope of the line through $(2, 1)$ and $(3, 4)$? [b]1.3.[/b] What is the units digit of $2^2 \cdot 4^4 \cdot 6^6$ ? [u]Round 2[/u] [b]2.1.[/b] Find the sum of the roots of $x^2 - 5x + 6$. [b]2. 2.[/b] Find the sum of the solutions to $|2 - x| = 1$. [b]2.3.[/b] On April $1$, $2018$, Mr. Dospinescu, Mr. Phaovibul and Mr. Pohoata all go swimming at the same pool. From then on, Mr. Dospinescu returns to the pool every 4th day, Mr. Phaovibul returns every $7$th day and Mr. Pohoata returns every $13$th day. What day will all three meet each other at the pool again? Give both the month and the day. [u]Round 3[/u] [b]3. 1.[/b] Kendall and Kylie are each selling t-shirts separately. Initially, they both sell t-shirts for $\$ 33$ each. A week later, Kendall marks up her t-shirt price by $30 \%$, but after seeing a drop in sales, she discounts her price by $30\%$ the following week. If Kim wants to buy $360$ t-shirts, how much money would she save by buying from Kendall instead of Kylie? Write your answer in dollars and cents. [b]3.2.[/b] Richard has English, Math, Science, Spanish, History, and Lunch. Each class is to be scheduled into one distinct block during the day. There are six blocks in a day. How many ways could he schedule his classes such that his lunch block is either the $3$rd or $4$th block of the day? [b]3.3.[/b] How many lattice points does $y = 1 + \frac{13}{17}x$ pass through for $x \in [-100, 100]$ ? (A lattice point is a point where both coordinates are integers.) [u]Round 4[/u] [b]4. 1.[/b] Unsurprisingly, Aaron is having trouble getting a girlfriend. Whenever he asks a girl out, there is an eighty percent chance she bursts out laughing in his face and walks away, and a twenty percent chance that she feels bad enough for him to go with him. However, Aaron is also a player, and continues asking girls out regardless of whether or not previous ones said yes. What is the minimum number of girls Aaron must ask out for there to be at least a fifty percent chance he gets at least one girl to say yes? [b]4.2.[/b] Nithin and Aaron are two waiters who are working at the local restaurant. On any given day, they may be fired for poor service. Since Aaron is a veteran who has learned his profession well, the chance of him being fired is only $\frac{2}{25}$ every day. On the other hand, Nithin (who never paid attention during job training) is very lazy and finds himself constantly making mistakes, and therefore the chance of him being fired is $\frac{2}{5}$. Given that after 1 day at least one of the waiters was fired, find the probability Nithin was fired. [b]4.3.[/b] In a right triangle, with both legs $4$, what is the sum of the areas of the smallest and largest squares that can be inscribed? An inscribed square is one whose four vertices are all on the sides of the triangle. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2784569p24468582]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024/2025 TOURNAMENT OF TOWNS, P4

Ten children have several bags of candies. The children begin to divide these candies among them. They take turns picking their shares of candies from each bag, and leave just after that. The size of the share is determined as follows: the current number of candies in the bag is divided by the number of remaining children (including the one taking the turn). If the remainder is nonzero than the quotient is rounded to the lesser integer. Is it possible that all the children receive different numbers of candies if the total number of bags is: a) 8 ; 6) 99 ? Alexey Glebov

2009 Junior Balkan Team Selection Tests - Romania, 4

Show that there exist (at least) a rearrangement $a_0, a_1, a_2,..., a_{63}$ of the numbers $0,1, 2,..., 63$, such that $a_i - a_j \ne a_j - a_k$, for any $i < j < k \in \{0,1, 2,..., 63\}$.

2022 JBMO TST - Turkey, 3

Each of the $29$ people attending a party wears one of three different types of hats. Call a person [i]lucky[/i] if at least two of his friends wear different types of hats. Show that it is always possible to replace the hat of a person at this party with a hat of one of the other two types, in a way that the total number of lucky people is not reduced.

2024 CMIMC Combinatorics and Computer Science, 5

In the table below, place the numbers 1--12 in the shaded cells. You start at the center cell (marked with $*$). You repeatedly move up, down, left, or right, chosen uniformly at random each time, until reaching a shaded cell. Your score is the number in the shaded cell that you end up at. Let $m$ be the least possible expected value of your score (based on how you placed the numbers), and $M$ be the greatest possible expected value of your score. Compute $m \cdot M$. [i]Proposed by Justin Hsieh[/i]

2020 MMATHS, I9

In how many ways can Irena can write the integers $1$ through $7$ in a line such that whenever she looks at any three consecutive (in the line) numbers, the largest is not in the rightmost position? [i]Proposed by Noah Kravitz[/i]