This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2008 Greece Team Selection Test, 2

In a village $X_0$ there are $80$ tourists who are about to visit $5$ nearby villages $X_1,X_2,X_3,X_4,X_5$.Each of them has chosen to visit only one of them.However,there are cases when the visit in a village forces the visitor to visit other villages among $X_1,X_2,X_3,X_4,X_5$.Each tourist visits only the village he has chosen and the villages he is forced to.If $X_1,X_2,X_3,X_4,X_5$ are totally visited by $40,60,65,70,75$ tourists respectively,then find how many tourists had chosen each one of them and determine all the ordered pairs $(X_i,X_j):i,j\in \{1,2,3,4,5\}$ which are such that,the visit in $X_i$ forces the visitor to visit $X_j$ as well.

1998 Israel National Olympiad, 3

A configuration of several checkers at the centers of squares on a rectangular sheet of grid paper is called [i]boring [/i] if some four checkers occupy the vertices of a rectangle with sides parallel to those of the sheet. (a) Prove that any configuration of more than $3mn/4$ checkers on an $m\times n$ grid is boring. (b) Prove that any configuration of $26$ checkers on a $7\times 7$ grid is boring.

2019 MOAA, 4

Brandon wants to split his orchestra of $20$ violins, $15$ violas, $10$ cellos, and $5$ basses into three distinguishable groups, where all of the players of each instrument are indistinguishable. He wants each group to have at least one of each instrument and for each group to have more violins than violas, more violas than cellos, and more cellos than basses. How many ways are there for Brandon to split his orchestra following these conditions?

2017 Moldova Team Selection Test, 8

At a summer school there are $7$ courses. Each participant was a student in at least one course, and each course was taken by exactly $40$ students. It is known that for each $2$ courses there were at most $9$ students who took them both. Prove that at least $120$ students participated at this summer school.

2022 IMO, 1

The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze (denoted B). Marianne has $n$ aluminum coins and $n$ bronze coins arranged in a row in some arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a fixed positive integer $k \leq 2n$, Gilberty repeatedly performs the following operation: he identifies the longest chain containing the $k^{th}$ coin from the left and moves all coins in that chain to the left end of the row. For example, if $n=4$ and $k=4$, the process starting from the ordering $AABBBABA$ would be $AABBBABA \to BBBAAABA \to AAABBBBA \to BBBBAAAA \to ...$ Find all pairs $(n,k)$ with $1 \leq k \leq 2n$ such that for every initial ordering, at some moment during the process, the leftmost $n$ coins will all be of the same type.

MMPC Part II 1958 - 95, 1967

[b]p1.[/b] Consider the system of simultaneous equations $$(x+y)(x+z)=a^2$$ $$(x+y)(y+z)=b^2$$ $$(x+z)(y+z)=c^2$$ , where $abc \ne 0$. Find all solutions $(x,y,z)$ in terms of $a$,$b$, and $c$. [b]p2.[/b] Shown in the figure is a triangle $PQR$ upon whose sides squares of areas $13$, $25$, and $36$ sq. units have been constructed. Find the area of the hexagon $ABCDEF$ . [img]https://cdn.artofproblemsolving.com/attachments/b/6/ab80f528a2691b07430d407ff19b60082c51a1.png[/img] [b]p3.[/b] Suppose $p,q$, and $r$ are positive integers no two of which have a common factor larger than $1$. Suppose $P,Q$, and $R$ are positive integers such that $\frac{P}{p}+\frac{Q}{q}+\frac{R}{r}$ is an integer. Prove that each of $P/p$, $Q/q$, and $R/r$ is an integer. [b]p4.[/b] An isosceles tetrahedron is a tetrahedron in which opposite edges are congruent. Prove that all face angles of an isosceles tetrahedron are acute angles. [img]https://cdn.artofproblemsolving.com/attachments/7/7/62c6544b7c3651bba8a9d210cd0535e82a65bd.png[/img] [b]p5.[/b] Suppose that $p_1$, $p_2$, $p_3$ and $p_4$ are the centers of four non-overlapping circles of radius $1$ in a plane and that, $p$ is any point in that plane. Prove that $$\overline{p_1p}^2+\overline{p_2p}^2+\overline{p_3p}^2+\overline{p_4p}^2 \ge 6.$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

KoMaL A Problems 2023/2024, A.860

A 0-1 sequence of length $2^k$ is given. Alice can pick a member from the sequence, and reveal it (its place and its value) to Bob. Find the largest number $s$ for which Bob can always pick $s$ members of the sequence, and guess all their values correctly. Alice and Bob can discuss a strategy before the game with the aim of maximizing the number of correct guesses of Bob. The only information Bob has is the length of the sequence and the member of the sequence picked by Alice.

2001 Tournament Of Towns, 3

Kolya is told that two of his four coins are fake. He knows that all real coins have the same weight, all fake coins have the same weight, and the weight of a real coin is greater than that of a fake coin. Can Kolya decide whether he indeed has exactly two fake coins by using a balance twice?

2020 LMT Fall, B22

A cube has one of its vertices and all edges connected to that vertex deleted. How many ways can the letters from the word "$AMONGUS$" be placed on the remaining vertices of the cube so that one can walk along the edges to spell out "$AMONGUS$"? Note that each vertex will have at most $1$ letter, and one vertex is deleted and not included in the walk

2001 Portugal MO, 1

To be able to play the Game of Glory, seven friends have to form four teams which, obviously, may not have the same number of members. In how many different ways can they form these teams? (The order of people within teams is not important, but each person can only be part of one team)

2021 Azerbaijan IZhO TST, 2

Find the number of ways to color $n \times m$ board with white and black colors such that any $2 \times 2$ square contains the same number of black and white cells.

1984 All Soviet Union Mathematical Olympiad, 390

The white fields of $1983\times 1984 $1983x1984 are filled with either $+1$ or $-1$. For every black field, the product of neighbouring numbers is $+1$. Prove that all the numbers are $+1$.

2023 USA IMO Team Selection Test, 5

Let $m$ and $n$ be fixed positive integers. Tsvety and Freyja play a game on an infinite grid of unit square cells. Tsvety has secretly written a real number inside of each cell so that the sum of the numbers within every rectangle of size either $m$ by $n$ or $n$ by $m$ is zero. Freyja wants to learn all of these numbers. One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully reveals what number is written in it. Freyja wins if, at any point, Freyja can simultaneously deduce the number written in every cell of the entire infinite grid (If this never occurs, Freyja has lost the game and Tsvety wins). In terms of $m$ and $n$, find the smallest number of questions that Freyja must ask to win, or show that no finite number of questions suffice. [i]Nikolai Beluhov[/i]

2023 Romanian Master of Mathematics, 2

Fix an integer $n \geq 3$. Let $\mathcal{S}$ be a set of $n$ points in the plane, no three of which are collinear. Given different points $A,B,C$ in $\mathcal{S}$, the triangle $ABC$ is [i]nice[/i] for $AB$ if $[ABC] \leq [ABX]$ for all $X$ in $\mathcal{S}$ different from $A$ and $B$. (Note that for a segment $AB$ there could be several nice triangles). A triangle is [i] beautiful [/i] if its vertices are all in $\mathcal{S}$ and is nice for at least two of its sides. Prove that there are at least $\frac{1}{2}(n-1)$ beautiful triangles.

2016 Swedish Mathematical Competition, 6

Each cell in a $13 \times 13$ grid table is painted in black or white. Each move consists of choosing a subsquare of size either $2 \times 2$ or $9 \times 9$, and painting all white cells of the choosen subsquare black, and painting all its black cells white. It is always possible to get all cells of the original square black, after a finite number of such moves ?

2017 Romania Team Selection Test, P5

A planar country has an odd number of cities separated by pairwise distinct distances. Some of these cities are connected by direct two-way flights. Each city is directly connected to exactly two ther cities, and the latter are located farthest from it. Prove that, using these flights, one may go from any city to any other city

1973 Poland - Second Round, 2

There are nine points in the data square, of which no three are collinear. Prove that three of them are vertices of a triangle with an area not exceeding $ \frac{1}{8} $ the area of a square.

2006 Estonia National Olympiad, 1

We call a [i]ship[/i] a figure made up of unit squares connected by common edges. Prove that if there is an odd number of possible different ships consisting of n unit squares on a $ 10 \times 10$ board, then n is divisible by 4.

2014 Nordic, 4

A game is played on an ${n \times n}$ chessboard. At the beginning there are ${99}$ stones on each square. Two players ${A}$ and ${B}$ take turns, where in each turn the player chooses either a row or a column and removes one stone from each square in the chosen row or column. They are only allowed to choose a row or a column, if it has least one stone on each square. The first player who cannot move, looses the game. Player ${A}$ takes the first turn. Determine all n for which player ${A}$ has a winning strategy.

2023 Malaysian APMO Camp Selection Test, 4

Let $k$ be a fixed integer. In the town of Ivanland, there are at least $k+1$ citizens standing on a plane such that the distances between any two citizens are distinct. An election is to be held such that every citizen votes the $k$-th closest citizen to be the president. What is the maximal number of votes a citizen can have? [i]Proposed by Ivan Chan Kai Chin[/i]

2022/2023 Tournament of Towns, P3

There are 2022 marked points on a straight line so that every two adjacent points are the same distance apart. Half of all the points are coloured red and the other half are coloured blue. Can the sum of the lengths of all the segments with a red left endpoint and a blue right endpoint be equal to the sum of the lengths of all the segments with a blue left endpoint and a red right endpoint?

2025 CMIMC Combo/CS, 1

Robert has five beads in his hand, with the letters $C, M, I, M,$ and $C,$ and he wants to make a circular bracelet spelling "$CMIMC.$" However, the power went out, so Robert can no longer see the beads in his hand. Thus, he puts the five beads on the bracelet randomly, hoping that the bracelet, when possibly rotated or flipped, spells out "$CMIMC.$" What is the probability that this happens? (Robert doesn’t care whether some letters appear upside down or backwards.)

1990 IMO Longlists, 31

Let $S = \{1, 2, \ldots, 1990\}$. A $31$-element subset of $S$ is called "good" if the sum of its elements is divisible by $5$. Find the number of good subsets of $S.$

OMMC POTM, 2023 6

Choose a permutation of$ \{1,2, ..., 20\}$ at random. Let $m$ be the amount of numbers in the permutation larger than all numbers before it. Find the expected value of $2^m$. [i]Proposed by Evan Chang (squareman), USA[/i]

2021 China Second Round, 4

Find the minimum value of $c$ such that for any positive integer $n\ge 4$ and any set $A\subseteq \{1,2,\cdots,n\}$, if $|A| >cn$, there exists a function $f:A\to\{1,-1\}$ satisfying $$\left| \sum_{a\in A}a\cdot f(a)\right| \le 1.$$