This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2002 Portugal MO, 3

Daniel painted a rectangular painting measuring $2$ meters by $4$ meters with four colors. Knowing that he used more than two colors to paint the four corners of the painting, prove that he painted of the same color two points that are at least $\sqrt5$ meters

2020 ABMC, 2020 Oct

[b]p1.[/b] Catherine's teacher thinks of a number and asks her to subtract $5$ and then multiply the result by $6$. Catherine accidentally switches the numbers by subtracting 6 and multiplying by $5$ to get $30$. If Catherine had not swapped the numbers, what would the correct answer be? [b]p2.[/b] At Acton Boxborough Regional High School, desks are arranged in a rectangular grid-like configuration. In order to maintain proper social distancing, desks are required to be at least 6 feet away from all other desks. Assuming that the size of the desks is negligible, what is the maximum number of desks that can fit in a $25$ feet by $25$ feet classroom? [b]p3.[/b] Joshua hates writing essays for homework, but his teacher Mr. Meesh assigns two essays every $3$ weeks. However, Mr. Meesh favors Joshua, so he allows Joshua to skip one essay out of every $4$ that are assigned. How many essays does Joshua have to write in a $24$-week school year? [b]p4.[/b] Libra likes to read, but she is easily distracted. If a page number is even, she reads the page twice. If a page number is an odd multiple of three, she skips it. Otherwise, she reads the page exactly once. If Libra's book is $405$ pages long, how many pages in total does she read if she starts on page $1$? (Reading the same page twice counts as two pages.) [b]p5.[/b] Let the GDP of an integer be its Greatest Divisor that is Prime. For example, the GDP of $14$ is $7$. Find the largest integer less than $100$ that has a GDP of $3$. [b]p6.[/b] As has been proven by countless scientific papers, the Earth is a flat circle. Bob stands at a point on the Earth such that if he walks in a straight line, the maximum possible distance he can travel before he falls off is $7$ miles, and the minimum possible distance he can travel before he falls off is $3$ miles. Then the Earth's area in square miles is $k\pi$ for some integer $k$. Compute $k$. [b]p7.[/b] Edward has $2$ magical eggs. Every minute, each magical egg that Edward has will double itself. But there's a catch. At the end of every minute, Edward's brother Eliot will come outside and smash one egg on his forehead, causing Edward to lose that egg permanently. For example, starting with $2$ eggs, after one minute there will be $3$ eggs, then $5$, $9$, and so on. After $1$ hour, the number of eggs can be expressed as $a^b + c$ for positive integers $a$, $b$, $c$ where $a > 1$, and $a$ and $c$ are as small as possible. Find $a + b + c$. [b]p8.[/b] Define a sequence of real numbers $a_1$, $a_2$, $a_3$, $..$, $a_{2019}$, $a_{2020}$ with the property that $a_n =\frac{a_{n-1} + a_n + a_{n+1}}{3}$ for all $n = 2$, $3$, $4$, $5$,$...$, $2018$, $2019$. Given that $a_1 = 1$ and $a_{1000} = 1999$, find $a_{2020}$. [b]p9.[/b] In $\vartriangle ABC$ with $AB = 10$ and $AC = 12$, points $D$ and $E$ lie on sides $\overline{AB}$ and $\overline{AC}$, respectively, such that $AD = 4$ and $AE = 5$. If the area of quadrilateral $BCED$ is $40$, find the area of $\vartriangle ADE$. [b]p10.[/b] A positive integer is called powerful if every prime in its prime factorization is raised to a power greater than or equal to $2$. How many positive integers less than 100 are powerful? [b]p11.[/b] Let integers $A,B < 10, 000$ be the populations of Acton and Boxborough, respectively. When $A$ is divided by $B$, the remainder is $1$. When $B$ is divided by $A$, the remainder is $2020$. If the sum of the digits of $A$ is $17$, find the total combined population of Acton and Boxborough. [b]p12.[/b] Let $a_1$, $a_2$, $...$, $a_n$ be an increasing arithmetic sequence of positive integers. Given $a_n - a_1 = 20$ and $a^2_n - a^2_{n-1} = 63$, find the sum of the terms in the arithmetic sequence. [b]p13.[/b] Bob rolls a cubical, an octahedral and a dodecahedral die ($6$, $8$ and $12$ sides respectively) numbered with the integers from $1$ to $6$, $1$ to $8$ and $1$ to $12$ respectively. If the probability that the sum of the numbers on the cubical and octahedral dice equals the number on the dodecahedral die can be written as $\frac{m}{n}$ , where $m, n$ are relatively prime positive integers, compute $n - m$. [b]p14.[/b] Let $\vartriangle ABC$ be inscribed in a circle with center $O$ with $AB = 13$, $BC = 14$, $AC = 15$. Let the foot of the perpendicular from $A$ to BC be $D$ and let $AO$ intersect $BC$ at $E$. Given the length of $DE$ can be expressed as $\frac{m}{n}$ where $m$, $n$ are relatively prime positive integers, find $m + n$. [b]p15.[/b] The set $S$ consists of the first $10$ positive integers. A collection of $10$ not necessarily distinct integers is chosen from $S$ at random. If a particular number is chosen more than once, all but one of its occurrences are removed. Call the set of remaining numbers $A$. Let $\frac{a}{b}$ be the expected value of the number of the elements in $A$, where $a, b$ are relatively prime positive integers. Find the reminder when $a + b$ is divided by $1000$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Dutch IMO TST, 2

Julian and Johan are playing a game with an even number of cards, say $2n$ cards, ($n \in Z_{>0}$). Every card is marked with a positive integer. The cards are shuffled and are arranged in a row, in such a way that the numbers are visible. The two players take turns picking cards. During a turn, a player can pick either the rightmost or the leftmost card. Johan is the first player to pick a card (meaning Julian will have to take the last card). Now, a player’s score is the sum of the numbers on the cards that player acquired during the game. Prove that Johan can always get a score that is at least as high as Julian’s.

1998 Tournament Of Towns, 3

What is the maximum number of colours that can be used to paint an $8 \times 8$ chessboard so that every square is painted in a single colour, and is adjacent , horizontally, vertically but not diagonally, to at least two other squares of its own colour? (A Shapovalov)

1989 Irish Math Olympiad, 2

2. Each of $n$ members of a club is given a different item of information. The members are allowed to share the information, but, for security reasons, only in the following way: A pair may communicate by telephone. During a telephone call only one member may speak. The member who speaks may tell the other member all the information (s)he knows. Determine the minimal number of phone calls that are required to convey all the information to each of the members. Hi, from my sketches I'm thinking the answer is $2n-2$ but I dont know how to prove that this number of calls is the smallest. Can anyone enlighten me? Thanks

2016 HMIC, 1

Theseus starts at the point $(0, 0)$ in the plane. If Theseus is standing at the point $(x, y)$ in the plane, he can step one unit to the north to point $(x, y+1)$, one unit to the west to point $(x-1, y)$, one unit to the south to point $(x, y-1)$, or one unit to the east to point $(x+1, y)$. After a sequence of more than two such moves, starting with a step one unit to the south (to point $(0, -1)$), Theseus finds himself back at the point $(0, 0)$. He never visited any point other than $(0, 0)$ more than once, and never visited the point $(0, 0)$ except at the start and end of this sequence of moves. Let $X$ be the number of times that Theseus took a step one unit to the north, and then a step one unit to the west immediately afterward. Let $Y$ be the number of times that Theseus took a step one unit to the west, and then a step one unit to the north immediately afterward. Prove that $|X - Y| = 1$. [i]Mitchell Lee[/i]

2019 Israel National Olympiad, 2

We are given a 5x5 square grid, divided to 1x1 tiles. Two tiles are called [b]linked[/b] if they lie in the same row or column, and the distance between their centers is 2 or 3. For example, in the picture the gray tiles are the ones linked to the red tile. [img]https://i.imgur.com/JVTQ9wB.png[/img] Sammy wants to mark as many tiles in the grid as possible, such that no two of them are linked. What is the maximal number of tiles he can mark?

2020 CHMMC Winter (2020-21), 4

[i](7 pts)[/i] Fix a positive integer $n$. Pick $4n$ equally spaced points on a circle and color them alternately blue and red. You use $n$ blue chords to pair the $2n$ blue points, and you use $n$ red chords to pair the $2n$ red points. If some blue chord intersects some other red chord, then such a pair of chords is called a "good pair." (a) [i](1 pts)[/i] For the case $n = 3$, explicitly show that there are at least $3$ distinct ways to pair the $2n$ blue points and the $2n$ red points such that there are a total of $3$ good pairs ($2$ configurations of chord pairings are [i]not[/i] considered distinct if one of them can be "rotated" to the other). (b) [i](6 pts)[/i] Now suppose that $n$ is arbitrary. Find, with proof, the minimum number of good pairs under all possible configurations of chord pairings.

2006 Switzerland - Final Round, 4

A circle with circumference 6n units is given and 3n points divide the circumference in n intervals of 1 unit, n intervals of 2 units, and n intervals of 3 units. Prove that there is at least one pair of points that are diametrically opposite to each other.

EMCC Guts Rounds, 2019

[u]Round 5[/u] [b]p13.[/b] Given a (not necessarily simplified) fraction $\frac{m}{n}$ , where $m, n > 6$ are positive integers, when $6$ is subtracted from both the numerator and denominator, the resulting fraction is equal to $\frac45$ of the original fraction. How many possible ordered pairs $(m, n)$ are there? [b]p14.[/b] Jamesu's favorite anime show has $3$ seasons, with $12$ episodes each. For $8$ days, Jamesu does the following: on the $n^{th}$ day, he chooses $n$ consecutive episodes of exactly one season, and watches them in order. How many ways are there for Jamesu to finish all $3$ seasons by the end of these $8$ days? (For example, on the first day, he could watch episode $5$ of the first season; on the second day, he could watch episodes $11$ and $12$ of the third season, etc.) [b]p15.[/b] Let $O$ be the center of regular octagon $ABCDEFGH$ with side length $6$. Let the altitude from $O$ meet side $AB$ at $M$, and let $BH$ meet $OM$ at $K$. Find the value of $BH \cdot BK$. [u]Round 6[/u] [b]p16.[/b] Fhomas writes the ordered pair $(2, 4)$ on a chalkboard. Every minute, he erases the two numbers $(a, b)$, and replaces them with the pair $(a^2 + b^2, 2ab)$. What is the largest number on the board after $10$ minutes have passed? [b]p17.[/b] Triangle $BAC$ has a right angle at $A$. Point $M$ is the midpoint of $BC$, and $P$ is the midpoint of $BM$. Point $D$ is the point where the angle bisector of $\angle BAC$ meets $BC$. If $\angle BPA = 90^o$, what is $\frac{PD}{DM}$? [b]p18.[/b] A square is called legendary if there exist two different positive integers $a, b$ such that the square can be tiled by an equal number of non-overlapping $a$ by $a$ squares and $b$ by $b$ squares. What is the smallest positive integer $n$ such that an $n$ by $n$ square is legendary? [u]Round 7[/u] [b]p19.[/b] Let $S(n)$ be the sum of the digits of a positive integer $n$. Let $a_1 = 2019!$, and $a_n = S(a_{n-1})$. Given that $a_3$ is even, find the smallest integer $n \ge 2$ such that $a_n = an_1$. [b]p20.[/b] The local EMCC bakery sells one cookie for $p$ dollars ($p$ is not necessarily an integer), but has a special offer, where any non-zero purchase of cookies will come with one additional free cookie. With $\$27:50$, Max is able to buy a whole number of cookies (including the free cookie) with a single purchase and no change leftover. If the price of each cookie were $3$ dollars lower, however, he would be able to buy double the number of cookies as before in a single purchase (again counting the free cookie) with no change leftover. What is the value of $p$? [b]p21.[/b] Let circle $\omega$ be inscribed in rhombus $ABCD$, with $\angle ABC < 90^o$. Let the midpoint of side $AB$ be labeled $M$, and let $\omega$ be tangent to side $AB$ at $E$. Let the line tangent to $\omega$ passing through $M$ other than line $AB$ intersect segment $BC$ at $F$. If $AE = 3$ and $BE = 12$, what is the area of $\vartriangle MFB$? [u]Round 8[/u] [b]p22.[/b] Find the remainder when $1010 \cdot 1009! + 1011 \cdot 1008! + ... + 2018 \cdot 1!$ is divided by $2019$. [b]p23.[/b] Two circles $\omega_1$ and $\omega_2$ have radii $1$ and $2$, respectively and are externally tangent to one another. Circle $\omega_3$ is externally tangent to both $\omega_1$ and $\omega_2$. Let $M$ be the common external tangent of $\omega_1$ and $\omega_3$ that doesn't intersect $\omega_2$. Similarly, let $N$ be the common external tangent of $\omega_2$ and $\omega_3$ that doesn't intersect $\omega_1$. Given that $M$ and N are parallel, find the radius of $\omega_3$. [b]p24.[/b] Mana is standing in the plane at $(0, 0)$, and wants to go to the EMCCiffel Tower at $(6, 6)$. At any point in time, Mana can attempt to move $1$ unit to an adjacent lattice point, or to make a knight's move, moving diagonally to a lattice point $\sqrt5$ units away. However, Mana is deathly afraid of negative numbers, so she will make sure never to decrease her $x$ or $y$ values. How many distinct paths can Mana take to her destination? PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2949411p26408196]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1974 IMO Longlists, 1

We consider the division of a chess board $8 \times 8$ in p disjoint rectangles which satisfy the conditions: [b]a)[/b] every rectangle is formed from a number of full squares (not partial) from the 64 and the number of white squares is equal to the number of black squares. [b]b)[/b] the numbers $\ a_{1}, \ldots, a_{p}$ of white squares from $p$ rectangles satisfy $a_1, , \ldots, a_p.$ Find the greatest value of $p$ for which there exists such a division and then for that value of $p,$ all the sequences $a_{1}, \ldots, a_{p}$ for which we can have such a division. [color=#008000]Moderator says: see [url]https://artofproblemsolving.com/community/c6h58591[/url][/color]

2003 Tournament Of Towns, 4

There are $N$ points on the plane; no three of them belong to the same straight line. Every pair of points is connected by a segment. Some of these segments are colored in red and the rest of them in blue. The red segments form a closed broken line without self-intersections(each red segment having only common endpoints with its two neighbors and no other common points with the other segments), and so do the blue segments. Find all possible values of $N$ for which such a disposition of $N$ points and such a choice of red and blue segments are possible.

MathLinks Contest 6th, 4.1

Tags: combinatorics , set
Let $F$ be a family of n subsets of a set $K$ with $5$ elements, such that any two subsets in $F$ have a common element. Find the minimal value of $n$ such that no matter how we choose $F$ with the properties above, there exists exactly one element of $K$ which belongs to all the sets in $F$.

2008 All-Russian Olympiad, 5

The distance between two cells of an infinite chessboard is defined as the minimum nuber to moves needed for a king for move from one to the other.One the board are chosen three cells on a pairwise distances equal to $ 100$. How many cells are there that are on the distance $ 50$ from each of the three cells?

2019 BmMT, Ind. Round

[b]p1.[/b] If Clark wants to divide $100$ pizzas among $25$ people so that each person receives the same number of pizzas, how many pizzas should each person receive? [b]p2.[/b] In a group of $3$ people, every pair of people shakes hands once. How many handshakes occur? [b]p3.[/b] Dylan and Joey have $14$ costumes in total. Dylan gives Joey $4$ costumes, and Joey now has the number of costumes that Dylan had before giving Joey any costumes. How many costumes does Dylan have now? [b]p4.[/b] At Banjo Borger, a burger costs $7$ dollars, a soda costs $2$ dollars, and a cookie costs $3$ dollars. Alex, Connor, and Tony each spent $11$ dollars on their order, but none of them got the same order. If Connor bought the most cookies, how many cookies did Connor buy? [b]p5.[/b] Joey, James, and Austin stand on a large, flat field. If the distance from Joey to James is $30$ and the distance from Austin to James is $18$, what is the minimal possible distance from Joey to Austin? [b]p6.[/b] If the first and third terms of a five-term arithmetic sequence are $3$ and $8$, respectively, what is the sum of all $5$ terms in the sequence? [b]p7.[/b] What is the area of the $S$-shaped figure below, which has constant vertical height $5$ and width $10$? [img]https://cdn.artofproblemsolving.com/attachments/3/c/5bbe638472c8ea8289b63d128cd6b449440244.png[/img] [b]p8.[/b] If the side length of square $A$ is $4$, what is the perimeter of square $B$, formed by connecting the midpoints of the sides of $A$? [b]p9.[/b] The Chan Shun Auditorium at UC Berkeley has room number $2050$. The number of seats in the auditorium is a factor of the room number, and there are between $150$ and $431$ seats, inclusive. What is the sum of all of the possible numbers of seats in Chan Shun Auditorium? [b]p10.[/b] Krishna has a positive integer $x$. He notices that $x^2$ has the same last digit as $x$. If Krishna knows that $x$ is a prime number less than $50$, how many possible values of $x$ are there? [b]p11.[/b] Jing Jing the Kangaroo starts on the number $1$. If she is at a positive integer $n$, she can either jump to $2n$ or to the sum of the digits of $n$. What is the smallest positive integer she cannot reach no matter how she jumps? [b]p12.[/b] Sylvia is $3$ units directly east of Druv and runs twice as fast as Druv. When a whistle blows, Druv runs directly north, and Sylvia runs along a straight line. If they meet at a point a distance $d$ units away from Druv's original location, what is the value of $d$? [b]p13.[/b] If $x$ is a real number such that $\sqrt{x} + \sqrt{10} = \sqrt{x + 20}$, compute $x$. [b]p14.[/b] Compute the number of rearrangments of the letters in $LATEX$ such that the letter $T$ comes before the letter $E$ and the letter $E$ comes before the letter $X$. For example, $TLEAX$ is a valid rearrangment, but $LAETX$ is not. [b]p15.[/b] How many integers $n$ greater than $2$ are there such that the degree measure of each interior angle of a regular $n$-gon is an even integer? [b]p16.[/b] Students are being assigned to faculty mentors in the Berkeley Math Department. If there are $7$ students and $3$ mentors and each student has exactly one mentor, in how many ways can students be assigned to mentors given that each mentor has at least one student? [b]p17.[/b] Karthik has a paper square of side length $2$. He folds the square along a crease that connects the midpoints of two opposite sides (as shown in the left diagram, where the dotted line indicates the fold). He takes the resulting rectangle and folds it such that one of its vertices lands on the vertex that is diagonally opposite. Find the area of Karthik's final figure. [img]https://cdn.artofproblemsolving.com/attachments/1/e/01aa386f6616cafeed5f95ababb27bf24657f6.png[/img] [b]p18.[/b] Sally is inside a pen consisting of points $(a, b)$ such that $0 \le a, b \le 4$. If she is currently on the point $(x, y)$, she can move to either $(x, y + 1)$, $(x, y - 1)$, or $(x + 1, y)$. Given that she cannot revisit any point she has visited before, find the number of ways she can reach $(4, 4)$ from $(0, 0)$. [b]p19.[/b] An ant sits on the circumference of the circular base of a party hat (a cone without a circular base for the ant to walk on) of radius $2$ and height $\sqrt{5}$. If the ant wants to reach a point diametrically opposite of its current location on the hat, what is the minimum possible distance the ant needs to travel? [img]https://cdn.artofproblemsolving.com/attachments/3/4/6a7810b9862fd47106c3c275c96337ef6d23c2.png[/img] [b]p20.[/b] If $$f(x) = \frac{2^{19}x + 2^{20}}{ x^2 + 2^{20}x + 2^{20}}.$$ find the value of $f(1) + f(2) + f(4) + f(8) + ... + f(220)$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Thailand TSTST, 1

Let $n\geq 3$ be an integer. Each vertex of a regular $n$-gon is labelled with a real number not exceeding $1$. For real numbers $a,b,c$ on any three consecutive vertices which are arranged clockwise in such an order, we have $c=|a-b|$. Determine the maximum value of the sum of all numbers in terms of $n$.

2015 Estonia Team Selection Test, 6

In any rectangular game board with black and white squares, call a row $X$ a mix of rows $Y$ and $Z$ whenever each cell in row $X$ has the same colour as either the cell of the same column in row $Y$ or the cell of the same column in row $Z$. Let a natural number $m \ge 3$ be given. In some rectangular board, black and white squares lie in such a way that all the following conditions hold. 1) Among every three rows of the board, one is a mix of two others. 2) For every two rows of the board, their corresponding cells in at least one column have different colours. 3) For every two rows of the board, their corresponding cells in at least one column have equal colours. 4) It is impossible to add a new row with each cell either black or white to the board in a way leaving both conditions 1) and 2) still in force Find all possibilities of what can be the number of rows of the board.

Kvant 2024, M2788

An equilateral triangle $\mathcal{T}{}$ with side 111 is divided by straight lines parallel to its sides into equilateral triangles with side 1. The vertices of these small triangles, except the centre of $\mathcal{T}{}$ are marked. Call a set of several marked points [i]linear[/i] if[list=i][*]the marked points lie on a line $\ell$ parallel to one of the sides of the triangle $\mathcal{T}$ and; [*]if two marked points on $\ell$ are in this set, every other marked point inbetween them is in the set. [/list]How many ways are there to split all the marked points into 111 linear sets?

2012 Rioplatense Mathematical Olympiad, Level 3, 6

In each square of a $100 \times 100$ board there is written an integer. The allowed operation is to choose four squares that form the figure or any of its reflections or rotations, and add $1$ to each of the four numbers. The aim is, through operations allowed, achieving a board with the smallest possible number of different residues modulo $33$. What is the minimum number that can be achieved with certainty?

2019 India Regional Mathematical Olympiad, 5

There is a pack of 27 distinct cards, and each card has three values on it. The first value is a shape from $\{\Delta,\square,\odot\}$; the second value is a letter from $\{A,B,C\}$; and the third value is a number from $\{1,2,3\}$. In how many ways can we choose an unordered set of 3 cards from the pack, so that no two of the chosen cards have two matching values. For example we can chose $\{\Delta A1,\Delta B2,\odot C3\}$ But we cannot choose $\{\Delta A1,\square B2,\Delta C1\}$

2006 Taiwan National Olympiad, 2

Ten test papers are to be prepared for the National Olympiad. Each paper has 4 problems, and no two papers have more than 1 problem in common. At least how many problems are needed?

2008 239 Open Mathematical Olympiad, 3

Prove that you can arrange arrows on the edges of a convex polyhedron such that each vertex contains at most three arrows.

2012 Benelux, 4

Yesterday, $n\ge 4$ people sat around a round table. Each participant remembers only who his two neighbours were, but not necessarily which one sat on his left and which one sat on his right. Today, you would like the same people to sit around the same round table so that each participant has the same two neighbours as yesterday (it is possible that yesterday’s left-hand side neighbour is today’s right-hand side neighbour). You are allowed to query some of the participants: if anyone is asked, he will answer by pointing at his two neighbours from yesterday. a) Determine the minimal number $f(n)$ of participants you have to query in order to be certain to succeed, if later questions must not depend on the outcome of the previous questions. That is, you have to choose in advance the list of people you are going to query, before effectively asking any question. b) Determine the minimal number $g(n)$ of participants you have to query in order to be certain to succeed, if later questions may depend on the outcome of previous questions. That is, you can wait until you get the first answer to choose whom to ask the second question, and so on.

1998 Tournament Of Towns, 4

Twelve places have been arranged at a round table for members of the Jury, with a name tag at each place . Professor K. being absent-minded instead of occupying his place, sits down at the next place (clockwise) . Each of the other Jury members in turn either occupies the place assigned to this member or, if it has been already occupied, sits down at the first free place in the clockwise order. The resulting seating arrangement depends on the order in which the Jury members come to the table. How many different seating arrangements of this kind are possible? (A Shapovalov)

2003 Bosnia and Herzegovina Team Selection Test, 1

Board has written numbers: $5$, $7$ and $9$. In every step we do the following: for every pair $(a,b)$, $a>b$ numbers from the board, we also write the number $5a-4b$. Is it possible that after some iterations, $2003$ occurs at the board ?