Found problems: 14842
1992 Tournament Of Towns, (337) 5
$100$ silver coins ordered by weight and $101$ gold coins also ordered by weight are given. All coins have different weights. You are given a balance to compare weights of any two coins. How can you find the “middle” coin (that occupies the $101$-st place in weight among all $201$ coins) using the minimal number of weighings? Find this number and prove that a smaller number of weighings would be insufficient.
(A. Andjans, Riga)
2018 IMO Shortlist, C2
A [i]site[/i] is any point $(x, y)$ in the plane such that $x$ and $y$ are both positive integers less than or equal to 20.
Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with Amy going first. On her turn, Amy places a new red stone on an unoccupied site such that the distance between any two sites occupied by red stones is not equal to $\sqrt{5}$. On his turn, Ben places a new blue stone on any unoccupied site. (A site occupied by a blue stone is allowed to be at any distance from any other occupied site.) They stop as soon as a player cannot place a stone.
Find the greatest $K$ such that Amy can ensure that she places at least $K$ red stones, no matter how Ben places his blue stones.
[i]Proposed by Gurgen Asatryan, Armenia[/i]
2005 Vietnam Team Selection Test, 2
Given $n$ chairs around a circle which are marked with numbers from 1 to $n$ .There are $k$, $k \leq 4 \cdot n$ students sitting on those chairs .Two students are called neighbours if there is no student sitting between them. Between two neighbours students ,there are at less 3 chairs. Find the number of choices of $k$ chairs so that $k$ students can sit on those and the condition is satisfied.
2012 Bundeswettbewerb Mathematik, 4
From the vertices of a regular 27-gon, seven are chosen arbitrarily. Prove that among these seven points there are three points that form an isosceles triangle or four points that form an isosceles trapezoid.
2020 Iranian Our MO, 7
$7501$ points in a $96 \times 96$ square is marked. We call the $4 \times 4$ square without its central $2 \times 2$ square a [i]frame[/i]. Prove that there exist a frame with sides parallel to the $96 \times 96$ square (not necessarily from the grid lines) that contains at least $10$ marked points.
[i]Proposed by Negar Babashah, Shima Amirbeygie[/i] [b]Rated 5[/b]
2014 India IMO Training Camp, 2
Let $n$ be a natural number.A triangulation of a convex n-gon is a division of the polygon into $n-2$ triangles by drawing $n-3$ diagonals no two of which intersect at an interior point of the polygon.Let $f(n)$ denote the number of triangulations of a regular n-gon such that each of the triangles formed is isosceles.Determine $f(n)$ in terms of $n$.
2002 Kazakhstan National Olympiad, 8
$ N $ grasshoppers are lined up in a row. At any time, one grasshopper is allowed to jump over exactly two grasshoppers standing to the right or left of him. At what $ n $ can grasshoppers rearrange themselves in reverse order?
1974 Chisinau City MO, 78
Each point of the sphere of radius $r\ge 1$ is colored in one of $n$ colors ($n \ge 2$), and for each color there is a point on the sphere colored in this color. Prove that there are points $A_i$, $B_i$, $i= 1, ..., n$ on the sphere such that the colors of the points $A_1, ..., A_n$ are pairwise different and the color of the point $B_i$ at a distance of $1$ from $A_i$ is different from the color of the point $A_1, i= 1, ..., n$
Mid-Michigan MO, Grades 10-12, 2019
[b]p1.[/b] In triangle $ABC$, the median $BM$ is drawn. The length $|BM| = |AB|/2$. The angle $\angle ABM = 50^o$. Find the angle $\angle ABC$.
[b]p2.[/b] Is there a positive integer $n$ which is divisible by each of $1, 2,3,..., 2018$ except for two numbers whose difference is$ 7$?
[b]p3.[/b] Twenty numbers are placed around the circle in such a way that any number is the average of its two neighbors. Prove that all of the numbers are equal.
[b]p4.[/b] A finite number of frogs occupy distinct integer points on the real line. At each turn, a single frog jumps by $1$ to the right so that all frogs again occupy distinct points. For some initial configuration, the frogs can make $n$ moves in $m$ ways. Prove that if they jump by $1$ to the left (instead of right) then the number of ways to make $n$ moves is also $m$.
[b]p5.[/b] A square box of chocolates is divided into $49$ equal square cells, each containing either dark or white chocolate. At each move Alex eats two chocolates of the same kind if they are in adjacent cells (sharing a side or a vertex). What is the maximal number of chocolates Alex can eat regardless of distribution of chocolates in the box?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Sharygin Geometry Olympiad, 4
Find all sets of six points in the plane, no three collinear, such that if we partition the set into two sets, then the obtained triangles are congruent.
1998 Iran MO (3rd Round), 3
Let $ABC$ be a given triangle. Consider any painting of points of the plane in red and green. Show that there exist either two red points on the distance $1$, or three green points forming a triangle congruent to triangle $ABC$.
1969 IMO Shortlist, 42
$(MON 3)$ Let $A_k (1 \le k \le h)$ be $n-$element sets such that each two of them have a nonempty intersection. Let $A$ be the union of all the sets $A_k,$ and let $B$ be a subset of $A$ such that for each $k (1\le k \le h)$ the intersection of $A_k$ and $B$ consists of exactly two different elements $a_k$ and $b_k$. Find all subsets $X$ of the set $A$ with $r$ elements satisfying the condition that for at least one index $k,$ both elements $a_k$ and $b_k$ belong to $X$.
2008 Serbia National Math Olympiad, 4
Each point of a plane is painted in one of three colors. Show that there exists a triangle such that:
$ (i)$ all three vertices of the triangle are of the same color;
$ (ii)$ the radius of the circumcircle of the triangle is $ 2008$;
$ (iii)$ one angle of the triangle is either two or three times greater than one of the other two angles.
2000 Mongolian Mathematical Olympiad, Problem 4
In a country with $n$ towns, the distance between the towns numbered $i$ and $j$ is denoted by $x_{ij}$. Suppose that the total length of every cyclic route which passes through every town exactly once is the same. Prove that there exist numbers $a_i,b_i$ ($i=1,\ldots,n$) such that $x_{ij}=a_i+b_j$ for all distinct $i,j$.
2013 Costa Rica - Final Round, LRP1
Consider a pyramid whose base is a $2013$-sided polygon. On each face of the pyramid the number $0$ is written. The following operation is carried out: a vertex is chosen from the pyramid and add or subtract $1$ from all the faces that contain that vertex. It's possible, after repeating a finite number of times the previous procedure, that all the faces of the pyramid have the number $1$ written?
2019 India IMO Training Camp, 3
There are $2019$ coins on a table. Some are placed with head up and others tail up. A group of $2019$ persons perform the following operations: the first person chooses any one coin and then turns it over, the second person choses any two coins and turns them over and so on and the $2019$-th person turns over all the coins. Prove that no matter which sides the coins are up initially, the $2019$ persons can come up with a procedure for turning the coins such that all the coins have smae side up at the end of the operations.
2011 IFYM, Sozopol, 3
Let $n$ be a natural number. Prove that the number of all non-isosceles triangles with lengths of their sides equal to natural numbers and a perimeter $2n$ is
$[\frac{n^2-6n+12}{12}]$.
2023 CMIMC Combo/CS, 2
Find the natural number $A$ such that there are $A$ integer solutions to $x+y\geq A$ where $0\leq x \leq 6$ and $0\leq y \leq 7$.
[i]Proposed by David Tang[/i]
MBMT Guts Rounds, 2023
[hide=B stands for Bernoulli, G stands for Germain]they had two problem sets under those two names[/hide]
[u]Set 4[/u]
[b]B16 / G11[/b] Let triangle $ABC$ be an equilateral triangle with side length $6$. If point $D$ is on $AB$ and point $E$ is on $BC$, find the minimum possible value of $AD + DE + CE$.
[b]B17 / G12[/b] Find the smallest positive integer $n$ with at least seven divisors.
[b]B18 / G13[/b] Square $A$ is inscribed in a circle. The circle is inscribed in Square $B$. If the circle has a radius of $10$, what is the ratio between a side length of Square $A$ and a side length of Square $B$?
[b]B19 / G14[/b] Billy Bob has $5$ distinguishable books that he wants to place on a shelf. How many ways can he order them if he does not want his two math books to be next to each other?
[b]B20 / G15[/b] Six people make statements as follows:
Person $1$ says “At least one of us is lying.”
Person $2$ says “At least two of us are lying.”
Person $3$ says “At least three of us are lying.”
Person $4$ says “At least four of us are lying.”
Person $5$ says “At least five of us are lying.”
Person $6$ says “At least six of us are lying.”
How many are lying?
[u]Set 5[/u]
[b]B21 / G16[/b] If $x$ and $y$ are between $0$ and $1$, find the ordered pair $(x, y)$ which maximizes $(xy)^2(x^2 - y^2)$.
[b]B22 / G17[/b] If I take all my money and divide it into $12$ piles, I have $10$ dollars left. If I take all my money and divide it into $13$ piles, I have $11$ dollars left. If I take all my money and divide it into $14$ piles, I have $12$ dollars left. What’s the least amount of money I could have?
[b]B23 / G18[/b] A quadratic equation has two distinct prime number solutions and its coefficients are integers that sum to a prime number. Find the sum of the solutions to this equation.
[b]B24 / G20[/b] A regular $12$-sided polygon is inscribed in a circle. Gaz then chooses $3$ vertices of the polygon at random and connects them to form a triangle. What is the probability that this triangle is right?
[b]B25 / G22[/b] A book has at most $7$ chapters, and each chapter is either $3$ pages long or has a length that is a power of $2$ (including $1$). What is the least positive integer $n$ for which the book cannot have $n$ pages?
[u]Set 6[/u]
[b]B26 / G26[/b] What percent of the problems on the individual, team, and guts rounds for both divisions have integer answers?
[b]B27 / G27[/b] Estimate $12345^{\frac{1}{123}}$.
[b]B28 / G28[/b] Let $O$ be the center of a circle $\omega$ with radius $3$. Let $A, B, C$ be randomly selected on $\omega$. Let $M$, $N$ be the midpoints of sides $BC$, $CA$, and let $AM$, $BN$ intersect at $G$. What is the probability that $OG \le 1$?
[b]B29 / G29[/b] Let $r(a, b)$ be the remainder when $a$ is divided by $b$. What is $\sum^{100}_{i=1} r(2^i , i)$?
[b]B30 / G30[/b] Bongo flips $2023$ coins. Call a run of heads a sequence of consecutive heads. Say a run is maximal if it isn’t contained in another run of heads. For example, if he gets $HHHT T HT T HHHHT H$, he’d have maximal runs of length $3, 1, 4, 1$. Bongo squares the lengths of all his maximal runs and adds them to get a number $M$. What is the expected value of $M$?
- - - - - -
[b]G19[/b] Let $ABCD$ be a square of side length $2$. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $AD$. Let the intersection of $BN$ and $CM$ be $E$. Find the area of quadrilateral $NECD$.
[b]G21[/b] Quadrilateral $ABCD$ has $\angle A = \angle D = 60^o$. If $AB = 8$, $CD = 10$, and $BC = 3$, what is length $AD$?
[b]G23[/b] $\vartriangle ABC$ is an equilateral triangle of side length $x$. Three unit circles $\omega_A$, $\omega_B$, and $\omega_C$ lie in the plane such that $\omega_A$ passes through $A$ while $\omega_B$ and $\omega_C$ are centered at $B$ and $C$, respectively. Given that $\omega_A$ is externally tangent to both $\omega_B$ and $\omega_C$, and the center of $\omega_A$ is between point $A$ and line $\overline{BC}$, find $x$.
[b]G24[/b] For some integers $n$, the quadratic function $f(x) = x^2 - (6n - 6)x - (n^2 - 12n + 12)$ has two distinct positive integer roots, exactly one out of which is a prime and at least one of which is in the form $2^k$ for some nonnegative integer $k$. What is the sum of all possible values of $n$?
[b]G25[/b] In a triangle, let the altitudes concur at $H$. Given that $AH = 30$, $BH = 14$, and the circumradius is $25$, calculate $CH$
PS. You should use hide for answers. Rest problems have been posted [url=https://artofproblemsolving.com/community/c3h3132167p28376626]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Germany Team Selection Test, 3
For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$
[i]Proposed by Shahjalal Shohag, Bangladesh[/i]
2019 CMIMC, 9
There are 15 cities, and there is a train line between each pair operated by either the Carnegie Rail Corporation or the Mellon Transportation Company. A tourist wants to visit exactly three cities by travelling in a loop, all by travelling on one line. What is the minimum number of such 3-city loops?
2004 Iran MO (2nd round), 3
The road ministry has assigned $80$ informal companies to repair $2400$ roads. These roads connect $100$ cities to each other. Each road is between $2$ cities and there is at most $1$ road between every $2$ cities. We know that each company repairs $30$ roads that it has agencies in each $2$ ends of them. Prove that there exists a city in which $8$ companies have agencies.
2005 iTest, 3
Carrie, Miranda, Charlotte, and Samantha are sitting at a table with $5$ numbered chairs (numbered $1$ through $5$). One chair is left open for Big, should he decide to join the four for lunch. In how many distinct ways can the four women occupy the table?
Russian TST 2014, P1
Given are twenty-two different five-element sets, such that any two of them have exactly two elements in common. Prove that they all have two elements in common.
2010 IMO Shortlist, 6
The rows and columns of a $2^n \times 2^n$ table are numbered from $0$ to $2^{n}-1.$ The cells of the table have been coloured with the following property being satisfied: for each $0 \leq i,j \leq 2^n - 1,$ the $j$-th cell in the $i$-th row and the $(i+j)$-th cell in the $j$-th row have the same colour. (The indices of the cells in a row are considered modulo $2^n$.) Prove that the maximal possible number of colours is $2^n$.
[i]Proposed by Hossein Dabirian, Sepehr Ghazi-nezami, Iran[/i]