This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2002 China Team Selection Test, 2

$ m$ and $ n$ are positive integers. In a $ 8 \times 8$ chessboard, $ (m,n)$ denotes the number of grids a Horse can jump in a chessboard ($ m$ horizontal $ n$ vertical or $ n$ horizontal $ m$ vertical ). If a $ (m,n) \textbf{Horse}$ starts from one grid, passes every grid once and only once, then we call this kind of Horse jump route a $ \textbf{H Route}$. For example, the $ (1,2) \textbf{Horse}$ has its $ \textbf{H Route}$. Find the smallest positive integer $ t$, such that from any grid of the chessboard, the $ (t,t\plus{}1) \textbf{Horse}$ does not has any $ \textbf{H Route}$.

2021 Federal Competition For Advanced Students, P1, 3

Let $n \ge 3$ be an integer. On a circle, there are $n$ points. Each of them is labelled with a real number at most $1$ such that each number is the absolute value of the difference of the two numbers immediately preceding it in clockwise order. Determine the maximal possible value of the sum of all numbers as a function of $n$. (Walther Janous)

2016 Tournament Of Towns, 7

a.) There are $2n+1$ ($n>2$) batteries. We don't know which batteries are good and which are bad but we know that the number of good batteries is greater by $1$ than the number of bad batteries. A lamp uses two batteries, and it works only if both of them are good. What is the least number of attempts sufficient to make the lamp work? b.) The same problem but the total number of batteries is $2n$ ($n>2$) and the numbers of good and bad batteries are equal. [i]Proposed by Alexander Shapovalov[/i]

IV Soros Olympiad 1997 - 98 (Russia), 10.9

There are $16$ points marked on the circle. Find the greatest possible number of acute triangles with vertices at the marked points.

2011 JBMO Shortlist, 1

Inside of a square whose side length is $1$ there are a few circles such that the sum of their circumferences is equal to $10$. Show that there exists a line that meets at least four of these circles.

2020 Dutch IMO TST, 4

Given are two positive integers $k$ and $n$ with $k \le n \le 2k - 1$. Julian has a large stack of rectangular $k \times 1$ tiles. Merlin calls a positive integer $m$ and receives $m$ tiles from Julian to place on an $n \times n$ board. Julian first writes on every tile whether it should be a horizontal or a vertical tile. Tiles may be used the board should not overlap or protrude. What is the largest number $m$ that Merlin can call if he wants to make sure that he has all tiles according to the rule of Julian can put on the plate?

2019 South Africa National Olympiad, 4

The squares of an $8 \times 8$ board are coloured alternatingly black and white. A rectangle consisting of some of the squares of the board is called [i]important[/i] if its sides are parallel to the sides of the board and all its corner squares are coloured black. The side lengths can be anything from $1$ to $8$ squares. On each of the $64$ squares of the board, we write the number of important rectangles in which it is contained. The sum of the numbers on the black squares is $B$, and the sum of the numbers on the white squares is $W$. Determine the difference $B - W$.

2000 All-Russian Olympiad Regional Round, 10.2

Among five outwardly identical coins, $3$ are real and two are fake, identical in weight, but it is unknown whether they are heavier or lighter than the real ones. How to find at least one real coin in the least number of weighings?

2008 Regional Olympiad of Mexico Center Zone, 3

Consider a $n \times n$ grid divided into $n ^ 2$ squares of $1 \times 1$. Each of the $(n + 1) ^ 2 $ vertices of the grid is colored red or blue. Find the number of coloring such that each unit square has two red and two blue vertices.

1997 Turkey MO (2nd round), 3

Let $D_{1}, D_{2}, . . . , D_{n}$ be rectangular parallelepipeds in space, with edges parallel to the $x, y, z$ axes. For each $D_{i}$, let $x_{i} , y_{i} , z_{i}$ be the lengths of its projections onto the $x, y, z$ axes, respectively. Suppose that for all pairs $D_{i}$ , $D_{j}$, if at least one of $x_{i} < x_{j}$ , $y_{i} < y_{j}$, $z_{i} < z_{j}$ holds, then $x_{i} \leq x_{j}$ , $y_{i} \leq y_{j}$, and $z_{i} < z_{j}$ . If the volume of the region $\bigcup^{n}_{i=1}{D_{i}}$ equals 1997, prove that there is a subset $\{D_{i_{1}}, D_{i_{2}}, . . . , D_{i_{m}}\}$ of the set $\{D_{1}, . . . , D_{n}\}$ such that $(i)$ if $k \not= l $ then $D_{i_{k}} \cap D_{i_{l}} = \emptyset $, and $(ii)$ the volume of $\bigcup^{m}_{k=1}{D_{i_{k}}}$ is at least 73.

2024/2025 TOURNAMENT OF TOWNS, P5

There is a balance without weights and there are two piles of stones of unknown masses, 10 stones in each pile. One is allowed an unlimited number of weighing iterations, but only 9 stones at most fit on any plate of the balance. Is it always possible to determine which stone pile is heavier or establish that they are equal? Sergey Dorichenko

2001 USA Team Selection Test, 3

For a set $S$, let $|S|$ denote the number of elements in $S$. Let $A$ be a set of positive integers with $|A| = 2001$. Prove that there exists a set $B$ such that (i) $B \subseteq A$; (ii) $|B| \ge 668$; (iii) for any $u, v \in B$ (not necessarily distinct), $u+v \not\in B$.

2023 ABMC, Team

[u]Round 1[/u] [b]1.1.[/b] A classroom has $29$ students. A teacher needs to split up the students into groups of at most $4$. What is the minimum number of groups needed? [b]1.2.[/b] On his history map quiz, Eric recalls that Sweden, Norway and Finland are adjacent countries, but he has forgotten which is which, so he labels them in random order. The probability that he labels all three countries correctly can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]1.3.[/b] In a class of $40$ sixth graders, the class average for their final test comes out to be $90$ (out of a $100$). However, a student brings up an issue with problem $5$, and $10$ students receive credit for this question, bringing the class average to a $90.75$. How many points was problem $5$ worth? [u]Round 2[/u] [b]2.1.[/b] Compute $1 - 2 + 3 - 4 + ... - 2022 + 2023$. [b]2.2.[/b] In triangle $ABC$, $\angle ABC = 75^o$. Point $D$ lies on side $AC$ such that $BD = CD$ and $\angle BDC$ is a right angle. Compute the measure of $\angle A$. [b]2.3.[/b] Joe is rolling three four-sided dice each labeled with positive integers from $1$ to $4$. The probability the sum of the numbers on the top faces of the dice is $6$ can be written as $\frac{p}{q}$ where $p$ and $q$ are relatively prime integers. Find $p + q$. [u]Round 3[/u] [b]3.1.[/b] For positive integers $a, b, c, d$ that satisfy $a + b + c + d = 23$, what is the maximum value of $abcd$? [b]3.2.[/b] A buckball league has twenty teams. Each of the twenty teams plays exactly five games with each of the other teams. If each game takes 1 hour and thirty minutes, then how many total hours are spent playing games? [b]3.3.[/b] For a triangle $\vartriangle ABC$, let $M, N, O$ be the midpoints of $AB$, $BC$, $AC$, respectively. Let $P, Q, R$ be points on $AB$, $BC$, $AC$ such that $AP =\frac13 AB$, $BQ =\frac13 BC$, and $CR =\frac13 AC$. The ratio of the areas of $\vartriangle MNO$ and $\vartriangle P QR$ can be expressed as $\frac{m}{n}$ , where $ m$ and $n$ are relatively prime positive integers. Find $m + n$. [u]Round 4[/u] [b]4.1.[/b] $2023$ has the special property that leaves a remainder of $1$ when divided by $2$, $21$ when divided by $22$, and $22$ when divided by $23$. Let $n$ equal the lowest integer greater than $2023$ with the above properties. What is $n$? [b]4.2.[/b] Ants $A, B$ are on points $(0, 0)$ and $(3, 3)$ respectively, and ant A is trying to get to $(3, 3)$ while ant $B$ is trying to get to $(0, 0)$. Every second, ant $A$ will either move up or right one with equal probability, and ant $B$ will move down or left one with equal probability. The probability that the ants will meet each other be $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$. [b]4.3.[/b] Find the number of trailing zeros of $100!$ in base $ 49$. PS. You should use hide for answers. Rounds 5-9 have been posted [url=https://artofproblemsolving.com/community/c3h3129723p28347714]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 China Team Selection Test, 2

Suppose $A=\{1,2,\dots,2002\}$ and $M=\{1001,2003,3005\}$. $B$ is an non-empty subset of $A$. $B$ is called a $M$-free set if the sum of any two numbers in $B$ does not belong to $M$. If $A=A_1\cup A_2$, $A_1\cap A_2=\emptyset$ and $A_1,A_2$ are $M$-free sets, we call the ordered pair $(A_1,A_2)$ a $M$-partition of $A$. Find the number of $M$-partitions of $A$.

2017 Bosnia and Herzegovina Team Selection Test, Problem 4

Let $n$ be a natural number. There are $6n + 4$ mathematicians at the conference. $2n+1$ meetings are held. On every meeting mathematicians are sitting at one table with $4$ chairs and $n$ tables with $6$ chairs. Distances between each two adjacent chairs are equal. Two mathematicians sit in $special$ position if they sit at the same table and they are adjacent or diametrically opposite. For which natural numbers $n$ is possible that after end of all meetings every 2 mathematicians are sitting at the $special$ position less than 2 times.

2017 CMIMC Combinatorics, 4

At a certain pizzeria, there are five different toppings available and a pizza can be ordered with any (possibly empty) subset of them on it. In how many ways can one order an unordered pair of pizzas such that at most one topping appears on both pizzas and at least one topping appears on neither?

2022 LMT Spring, 7

A teacher wishes to separate her $12$ students into groups. Yesterday, the teacher put the students into $4$ groups of $3$. Today, the teacher decides to put the students into $4$ groups of $3$ again. However, she doesn’t want any pair of students to be in the same group on both days. Find how many ways she could formthe groups today.

2018 Peru IMO TST, 6

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2013 BmMT, Team Round

[b]p1.[/b] If Bob takes $6$ hours to build $4$ houses, how many hours will he take to build $ 12$ houses? [b]p2.[/b] Compute the value of $\frac12+ \frac16+ \frac{1}{12} + \frac{1}{20}$. [b]p3.[/b] Given a line $2x + 5y = 170$, find the sum of its $x$- and $y$-intercepts. [b]p4.[/b] In some future year, BmMT will be held on Saturday, November $19$th. In that year, what day of the week will April Fool’s Day (April $1$st) be? [b]p5.[/b] We distribute $78$ penguins among $10$ people in such a way that no person has the same number of penguins and each person has at least one penguin. If Mr. Popper (one of the $10$ people) wants to take as many penguins as possible, what is the largest number of penguins that Mr. Popper can take? [b]p6.[/b] A letter is randomly chosen from the eleven letters of the word MATHEMATICS. What is the probability that this letter has a vertical axis of symmetry? [b]p7. [/b]Alice, Bob, Cara, David, Eve, Fred, and Grace are sitting in a row. Alice and Bob like to pass notes to each other. However, anyone sitting between Alice and Bob can read the notes they pass. How many ways are there for the students to sit if Eve wants to be able to read Alice and Bob’s notes, assuming reflections are distinct? [b]p8.[/b] The pages of a book are consecutively numbered from $1$ through $480$. How many times does the digit $8$ appear in this numbering? [b]p9.[/b] A student draws a flower by drawing a regular hexagon and then constructing semicircular petals on each side of the hexagon. If the hexagon has side length $2$, what is the area of the flower? [b]p10.[/b] There are two non-consecutive positive integers $a, b$ such that $a^2 - b^2 = 291$. Find $a$ and $b$. [b]p11.[/b] Let $ABC$ be an equilateral triangle. Let $P, Q, R$ be the midpoints of the sides $BC$, $CA$ and $AB$ respectively. Suppose the area of triangle $PQR$ is $1$. Among the $6$ points $A, B, C, P, Q, R$, how many distinct triangles with area $1$ have vertices from that set of $6$ points? [b]p12.[/b] A positive integer is said to be binary-emulating if its base three representation consists of only $0$s and $1$s. Determine the sum of the first $15$ binary-emulating numbers. [b]p13.[/b] Professor $X$ can choose to assign homework problems from a set of problems labeled $ 1$ to $30$, inclusive. No two problems in his assignment can share a common divisor greater than $ 1$. What is the maximum number of problems that Professor $X$ can assign? [b]p14.[/b] Trapezoid $ABCD$ has legs (non-parallel sides) $BC$ and $DA$ of length $5$ and $6$ respectively, and there exists a point $X$ on $CD$ such that $\angle XBC = \angle XAD = \angle AXB = 90^o$ . Find the area of trapezoid $ABCD$. [b]p15.[/b] Alice and Bob play a game of Berkeley Ball, in which the first person to win four rounds is the winner. No round can end in a draw. How many distinct games can be played in which Alice is the winner? (Two games are said to be identical if either player wins/loses rounds in the same order in both games.) [b]p16.[/b] Let $ABC$ be a triangle and M be the midpoint of $BC$. If $AB = AM = 5$ and $BC = 12$, what is the area of triangle $ABC$? [b]p17. [/b] A positive integer $n$ is called good if it can be written as $5x+ 8y = n$ for positive integers $x, y$. Given that $42$, $43$, $44$, $45$ and $46$ are good, what is the largest n that is not good? [b]p18.[/b] Below is a $ 7 \times 7$ square with each of its unit squares labeled $1$ to $49$ in order. We call a square contained in the figure [i]good [/i] if the sum of the numbers inside it is odd. For example, the entire square is [i]good [/i] because it has an odd sum of $1225$. Determine the number of [i]good [/i] squares in the figure. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 [hide][img]https://cdn.artofproblemsolving.com/attachments/9/2/1039c3319ae1eab7102433694acc20fb995ebb.png[/hide] [b]p19.[/b] A circle of integer radius $ r$ has a chord $PQ$ of length $8$. There is a point $X$ on chord $PQ$ such that $\overline{PX} = 2$ and $\overline{XQ} = 6$. Call a chord $AB$ euphonic if it contains $X$ and both $\overline{AX}$ and $\overline{XB}$ are integers. What is the minimal possible integer $ r$ such that there exist $6$ euphonic chords for $X$? [b]p20.[/b] On planet [i]Silly-Math[/i], two individuals may play a game where they write the number $324000$ on a whiteboard and take turns dividing the number by prime powers – numbers of the form $p^k$ for some prime $p$ and positive integer $k$. Divisions are only legal if the resulting number is an integer. The last player to make a move wins. Determine what number the first player should select to divide $324000$ by in order to ensure a win. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 ISI B.Math Entrance Exam, 6

In $ISI$ club each member is on two committees and any two committees have exactly one member in common . There are 5 committees . How many members does $ISI$ club have????

2007 Estonia Math Open Senior Contests, 9

Find all positive integers n such that one can write an integer 1 to $ n^2$ into each unit square of a $ n^2 \times n^2$ table in such a way that, in each row, each column and each $ n \times n$ block of unit squares, each number 1 to $ n^2$ occurs exactly once.

2025 Austrian MO National Competition, 3

Consider the following game for a positive integer $n$. Initially, the numbers $1, 2, \ldots, n$ are written on a board. In each move, two numbers are selected such that their difference is also present on the board. This difference is then erased from the board. (For example, if the numbers $3,6,11$ and $17$ are on the board, then $3$ can be erased as $6 - 3=3$, or $6$ as $17 - 11=6$, or $11$ as $17 - 6=11$.) For which values of $n$ is it possible to end with only one number remaining on the board? [i](Michael Reitmeir)[/i]

1991 IMO Shortlist, 12

Let $ S \equal{} \{1,2,3,\cdots ,280\}$. Find the smallest integer $ n$ such that each $ n$-element subset of $ S$ contains five numbers which are pairwise relatively prime.

Math Hour Olympiad, Grades 5-7, 2015.57

[u]Round 1[/u] [b]p1.[/b] A party is attended by ten people (men and women). Among them is Pat, who always lies to people of the opposite gender and tells the truth to people of the same gender. Pat tells five of the guests: “There are more men than women at the party.” Pat tells four of the guests: “There are more women than men at the party.” Is Pat a man or a woman? [b]p2.[/b] Once upon a time in a land far, far away there lived $100$ knights, $99$ princesses, and $101$ dragons. Over time, knights beheaded dragons, dragons ate princesses, and princesses poisoned knights. But they always obeyed an ancient law that prohibits killing any creature who has killed an odd number of others. Eventually only one creature remained alive. Could it have been a knight? A dragon? A princess? [b]p3.[/b] The numbers $1 \circ 2 \circ 3 \circ 4 \circ 5 \circ 6 \circ 7 \circ 8 \circ 9 \circ 10$ are written in a line. Alex and Vicky play a game, taking turns inserting either an addition or a multiplication symbol between adjacent numbers. The last player to place a symbol wins if the resulting expression is odd and loses if it is even. Alex moves first. Who wins? (Remember that multiplication is performed before addition.) [b]p4.[/b] A chess tournament had $8$ participants. Each participant played each other participant once. The winner of a game got $1$ point, the loser $0$ points, and in the case of a draw each got $1/2$ a point. Each participant scored a different number of points, and the person who got $2$nd prize scored the same number of points as the $5$th, $6$th, $7$th and $8$th place participants combined. Can you determine the result of the game between the $3$rd place player and the $5$th place player? [b]p5.[/b] One hundred gnomes sit in a circle. Each gnome gets a card with a number written on one side and a different number written on the other side. Prove that it is possible for all the gnomes to lay down their cards so that no two neighbors have the same numbers facing up. [u]Round 2[/u] [b]p6.[/b] A casino machine accepts tokens of $32$ different colors, one at a time. For each color, the player can choose between two fixed rewards. Each reward is up to $\$10$ cash, plus maybe another token. For example, a blue token always gives the player a choice of getting either $\$5$ plus a red token or $\$3$ plus a yellow token; a black token can always be exchanged either for $\$10$ (but no token) or for a brown token (but no cash). A player may keep playing as long as he has a token. Rob and Bob each have one white token. Rob watches Bob play and win $\$500$. Prove that Rob can win at least $\$1000$. [img]https://cdn.artofproblemsolving.com/attachments/6/6/e55614bae92233c9b2e7d66f5f425a18e6475a.png[/img] [b]p7.[/b] Each of the $100$ residents of Pleasantville has at least $30$ friends in town. A resident votes in the mayoral election only if one of her friends is a candidate. Prove that it is possible to nominate two candidates for mayor so that at least half of the residents will vote. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Peru IMO TST, 8

You want to paint some edges of a regular dodecahedron red so that each face has an even number of painted edges (which can be zero). Determine from How many ways this coloration can be done. Note: A regular dodecahedron has twelve pentagonal faces and in each vertex concur three edges. The edges of the dodecahedron are all different for the purpose of the coloring . In this way, two colorings are the same only if the painted edges they are the same.