This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

EMCC Accuracy Rounds, 2016

[b]p1.[/b] A right triangle has a hypotenuse of length $25$ and a leg of length $16$. Compute the length of the other leg of this triangle. [b]p2.[/b] Tanya has a circular necklace with $5$ evenly-spaced beads, each colored red or blue. Find the number of distinct necklaces in which no two red beads are adjacent. If a necklace can be transformed into another necklace through a series of rotations and reflections, then the two necklaces are considered to be the same. [b]p3.[/b] Find the sum of the digits in the decimal representation of $10^{2016} - 2016$. [b]p4.[/b] Let $x$ be a real number satisfying $$x^1 \cdot x^2 \cdot x^3 \cdot x^4 \cdot x^5 \cdot x^6 = 8^7.$$ Compute the value of $x^7$. [b]p5.[/b] What is the smallest possible perimeter of an acute, scalene triangle with integer side lengths? [b]p6.[/b] Call a sequence $a_1, a_2, a_3,..., a_n$ mountainous if there exists an index $t$ between $1$ and $n$ inclusive such that $$a_1 \le a_2\le ... \le a_t \,\,\,\, and \,\,\,\, a_t \ge a_{t+1} \ge ... \ge a_n$$ In how many ways can Bishal arrange the ten numbers $1$, $1$, $2$, $2$, $3$, $3$, $4$, $4$, $5$, and $5$ into a mountainous sequence? (Two possible mountainous sequences are $1$, $1$, $2$, $3$, $4$, $4$, $5$, $5$, $3$, $2$ and $5$, $5$, $4$, $4$, $3$, $3$, $2$, $2$, $1$, $1$.) [b]p7.[/b] Find the sum of the areas of all (non self-intersecting) quadrilaterals whose vertices are the four points $(-3,-6)$, $(7,-1)$, $(-2, 9)$, and $(0, 0)$. [b]p8.[/b] Mohammed Zhang's favorite function is $f(x) =\sqrt{x^2 - 4x + 5} +\sqrt{x^2 + 4x + 8}$. Find the minumum possible value of $f(x)$ over all real numbers $x$. [b]p9.[/b] A segment $AB$ with length $1$ lies on a plane. Find the area of the set of points $P$ in the plane for which $\angle APB$ is the second smallest angle in triangle $ABP$. [b]p10.[/b] A binary string is a dipalindrome if it can be produced by writing two non-empty palindromic strings one after the other. For example, $10100100$ is a dipalindrome because both $101$ and $00100$ are palindromes. How many binary strings of length $18$ are both palindromes and dipalindromes? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Purple Comet Problems, 11

Find the number of positive integers $k \le 2018$ for which there exist integers $m$ and $n$ so that $k = 2^m + 2^n$. For example, $64 = 2^5 + 2^5$, $65 = 2^0 + 2^6$, and $66 = 2^1 + 2^6$.

1997 Tournament Of Towns, (531) 3

In a chess tournament, each of $2n$ players plays every other player once in each of two rounds. A win is worth $1$ point, a draw is worth $\frac12$ point and a loss is worth nothing. Prove that if for every player, the total score in the first round differs from that in the second round by at least n points, then this difference is exactly n points for every player. (B Frenkin)

2003 All-Russian Olympiad Regional Round, 10.8

In a set of 17 externally identical coins, two are counterfeit, differing from the rest in weight. It is known that the total weight of two counterfeit coins is twice the weight of a real one.s it always possible to determine the couple of counterfeit coins, having made $5$ weighings on a cup scale without weights? (It is not necessary to determine which of the fakes is heavier.)

2007 Argentina National Olympiad, 6

Julián chooses $2007$ points of the plane between which there are no $3$ aligned, and draw with red all the segments that join two of those points. Next, Roberto draws several lines. Its objective is for each red segment to be cut inside by (at least) one of the lines. Determine the minor $\ell$ lines such that, no matter how Julián chooses the $2007$ points, with the properly chosen $\ell$ lines, Roberto will achieve his objective with certainty.

2008 Romania National Olympiad, 3

Let $ A\equal{}\{1,2,\ldots, 2008\}$. We will say that set $ X$ is an $ r$-set if $ \emptyset \neq X \subset A$, and $ \sum_{x\in X} x \equiv r \pmod 3$. Let $ X_r$, $ r\in\{0,1,2\}$ be the set of $ r$-sets. Find which one of $ X_r$ has the most elements.

2015 India IMO Training Camp, 2

A $10$-digit number is called a $\textit{cute}$ number if its digits belong to the set $\{1,2,3\}$ and the difference of every pair of consecutive digits is $1$. a) Find the total number of cute numbers. b) Prove that the sum of all cute numbers is divisibel by $1408$.

2009 May Olympiad, 4

Each square of a $5 \times 5$ board is painted red or blue, in such a way that the following condition is fulfilled: “For any two rows and two columns, of the $4$ squares that are in their intersections, there are $4$, $2$ or $0$ painted red.” How many ways can the board be painted?

2009 Serbia National Math Olympiad, 3

Determine the largest positive integer $n$ for which there exist pairwise different sets $\mathbb{S}_1 , ..., \mathbb{S}_n$ with the following properties: $1$) $|\mathbb{S}_i \cup \mathbb{S}_j | \leq 2004$ for any two indices $1 \leq i, j\leq n$, and $2$) $\mathbb{S}_i \cup \mathbb{S}_j \cup \mathbb{S}_k = \{ 1,2,...,2008 \}$ for any $1 \leq i < j < k \leq n$ [i]Proposed by Ivan Matic[/i]

1988 Tournament Of Towns, (178) 4

Pawns are placed on an infinite chess board so that they form an infinite square net (along any row or column containing pawns ther is a pawn , three free squares , pawn , three squares, and so on , with only every fourth row and every fourth column containing pawns). Prove that it is not possible for a knight to tour every free square once and only once. (An old problem of A . K . Tolpugo)

2012 Romanian Master of Mathematics, 5

Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours. [i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]

1980 Czech And Slovak Olympiad IIIA, 6

Let $M$ be the set of five points in space, none of which four do not lie in a plane. Let $R$ be a set of seven planes with properties: a) Each plane from the set $R$ contains at least one point of the set$ M$. b) None of the points of the set M lie in the five planes of the set $R$. Prove that there are also two distinct points $P$, $Q$, $ P \in M$, $Q \in M$, that the line $PQ$ is not the intersection of any two planes from the set $R$.

2002 India IMO Training Camp, 6

Determine the number of $n$-tuples of integers $(x_1,x_2,\cdots ,x_n)$ such that $|x_i| \le 10$ for each $1\le i \le n$ and $|x_i-x_j| \le 10$ for $1 \le i,j \le n$.

2023 CMWMC, R7

[b]p19.[/b] Sequences $a_n$ and $b_n$ of positive integers satisfy the following properties: (1) $a_1 = b_1 = 1$ (2) $a_5 = 6, b_5 \ge 7$ (3) Both sequences are strictly increasing (4) In each sequence, the difference between consecutive terms is either $1$ or $2$ (5) $\sum^5_{n=1}na_n =\sum^5_{n=1}nb_n = S$ Compute $S$. [b]p20.[/b] Let $A$, $B$, and $C$ be points lying on a line in that order such that $AB = 4$ and $BC = 2$. Let $I$ be the circle centered at B passing through $C$, and let $D$ and $E$ be distinct points on $I$ such that $AD$ and $AE$ are tangent to $I$. Let $J$ be the circle centered at $C$ passing through $D$, and let $F$ and $G$ be distinct points on $J$ such that $AF$ and $AG$ are tangent to $J$ and $DG < DF$. Compute the area of quadrilateral $DEFG$. [b]p21.[/b] Twain is walking randomly on a number line. They start at $0$, and flip a fair coin $10$ times. Every time the coin lands heads, they increase their position by 1, and every time the coin lands tails, they decrease their position by $1$. What is the probability that at some point the absolute value of their position is at least $3$? PS. You should use hide for answers.

2008 Postal Coaching, 5

Let $n \in N$. Find the maximum number of irreducible fractions a/b (i.e., $gcd(a, b) = 1$) which lie in the interval $(0,1/n)$.

2008 Bulgarian Autumn Math Competition, Problem 8.4

Let $M$ be a set of $99$ different rays with a common end point in a plane. It's known that two of those rays form an obtuse angle, which has no other rays of $M$ inside in. What is the maximum number of obtuse angles formed by two rays in $M$?

2001 Macedonia National Olympiad, 4

Let $\Omega$ be a family of subsets of $M$ such that: $(\text{i})$ If $|A\cap B|\ge 2$ for $A,B\in\Omega$, then $A=B$; $(\text{ii})$ There exist different subsets $A,B,C\in\Omega$ with $|A\cap B\cap C|=1$; $(\text{iii})$ For every $A\in\Omega$ and $a\in M \ A$, there is a unique $B\in\Omega$ such that $a\in B$ and $A\cap B=\emptyset$. Prove that there are numbers $p$ and $s$ such that: $(1)$ Each $a\in M$ is contained in exactly $p$ sets in $\Omega$; $(2)$ $|A|=s$ for all $A\in\Omega$; $(3)$ $s+1\ge p$.

2021/2022 Tournament of Towns, P2

On a table there are all 8 possible horizontal bars $1\times3$ such that each $1\times1$ square is either white or gray (see the figure). It is allowed to move them in any direction by any (not necessarily integer) distance. We may not rotate them or turn them over. Is it possible to move the bars so that they do not overlap, all the white points form a polygon bounded by a closed non-self-intersecting broken line and the same is true for all the gray points? [i]Mikhail Ilyinsky[/i]

2004 Chile National Olympiad, 5

On the infinite surface of the sea floats a black and bounded oil slick. After every minute the slick and the sea change according to the following law: at each point $P$ of the sea (or of the slick), a disk $D$ of radius $1$ is considered centered on $ P$. If more than half of the area inside the disk $D$ is black, the $P$ point will remain black for the next minute. If more than half of the area inside the disk $D$ is dark blue, the point $P$ will be dark blue for the next minute. In the event that both the clean and the contaminated area within the disk $D$ are the same, its center $P$ will not change color. Can that stain "live" forever or will it disappear at some point?

2010 Brazil National Olympiad, 2

Determine all values of $n$ for which there is a set $S$ with $n$ points, with no 3 collinear, with the following property: it is possible to paint all points of $S$ in such a way that all angles determined by three points in $S$, all of the same color or of three different colors, aren't obtuse. The number of colors available is unlimited.

2022 MOAA, 8

Raina the frog is playing a game in a circular pond with six lilypads around its perimeter numbered clockwise from $1$ to $6$ (so that pad $1$ is adjacent to pad $6$). She starts at pad $1$, and when she is on pad i, she may jump to one of its two adjacent pads, or any pad labeled with $j$ for which $j - i$ is even. How many jump sequences enable Raina to hop to each pad exactly once?

2019 Peru EGMO TST, 3

For a finite set $A$ of integers, define $s(A)$ as the number of values obtained by adding any two elements of $A$, not necessarily different. Analogously, define $r (A)$ as the number of values obtained by subtracting any two elements of $A$, not necessarily different. For example, if $A = \{3,1,-1\}$ $\bullet$ The values obtained by adding any two elements of $A$ are $\{6,4,2,0,-2\}$ and so $s (A) = 5$. $\bullet$ The values obtained by subtracting any two elements of $A$ are $\{4,2,0,-2,-4\}$ and as $r (A) = 5$. Prove that for each positive integer $n$ there is a finite set $A$ of integers such that $r (A) \ge n s (A)$.

2016 India Regional Mathematical Olympiad, 2

On a stormy night ten guests came to dinner party and left their shoes outside the room in order to keep the carpet clean. After the dinner there was a blackout, and the gusts leaving one by one, put on at random, any pair of shoes big enough for their feet. (Each pair of shoes stays together). Any guest who could not find a pair big enough spent the night there. What is the largest number of guests who might have had to spend the night there?

2020 HK IMO Preliminary Selection Contest, 12

There are some balls, on each of which a positive integer not exceeding $14$ (and not necessarily distinct) is written, and the sum of the numbers on all balls is $S$. Find the greatest possible value of $S$ such that, regardless of what the integers are, one can ensure that the balls can be divided into two piles so that the sum of the numbers on the balls in each pile does not exceed $129$.

2009 Mexico National Olympiad, 3

At a party with $n$ people, it is known that among any $4$ people, there are either $3$ people who all know one another or $3$ people none of which knows another. Show that the $n$ people can be separated into two rooms, so that everyone in one room knows one another and no two people in the other room know each other.