Found problems: 14842
2000 All-Russian Olympiad Regional Round, 9.6
Among $2000$ outwardly indistinguishable balls, wines - aluminum weighing 1$0$ g, and the rest - duralumin weighing $9.9$ g. It is required to select two piles of balls so that the masses of the piles are different, and the number of balls in them - the same. What is the smallest number of weighings on a cup scale without weights that can be done?
2017 Azerbaijan Senior National Olympiad, C3
A student firstly wrote $x=3$ on the board. For each procces, the stutent deletes the number x and replaces it with either $(2x+4)$ or $(3x+8)$ or $(x^2+5x)$. Is this possible to make the number $(20^{17}+2016)$ on the board? \\
(Explain your answer) \\
[hide=Note]This type of the question is well known but I am going to make a collection so, :blush: [/hide]
Novosibirsk Oral Geo Oly VIII, 2020.2
Vitya cut the chessboard along the borders of the cells into pieces of the same perimeter. It turned out that not all of the received parts are equal. What is the largest possible number of parts that Vitya could get?
2007 Germany Team Selection Test, 1
Let $ n > 1, n \in \mathbb{Z}$ and $ B \equal{}\{1,2,\ldots, 2^n\}.$ A subset $ A$ of $ B$ is called weird if it contains exactly one of the distinct elements $ x,y \in B$ such that the sum of $ x$ and $ y$ is a power of two. How many weird subsets does $ B$ have?
2017 Nordic, 4
Find all integers $n$ and $m$, $n > m > 2$, and such that a regular $n$-sided polygon can be inscribed in a regular $m$-sided polygon so that all the vertices of the $n$-gon lie on the sides of the $m$-gon.
2024 UMD Math Competition Part I, #12
A square has $2$ diagonals. A regular pentagon has $5$ diagonals. $n$ is the smallest positive integer such that a regular $n$-gon has greater than or equal to $2024$ diagonals. What is the sum of the digits of $n$?
\[\mathrm a. ~10\qquad \mathrm b. ~11 \qquad \mathrm c. ~12 \qquad\mathrm d. ~13\qquad\mathrm e. ~14\]
2003 All-Russian Olympiad Regional Round, 9.5
$100$ people came to the party. Then those who had no acquaintances among those who came left. Among those who remained, then those who had exactly $1$ friend , also left. Then those who had exactly $2$, $3$, $4$,$ . .$ , $99$ acquaintances among those remaining at the time of their departure did the same..What is the largest number of people left at the end?
2004 Tournament Of Towns, 2
Find all possible values of $n \ge 1$ for which there exist $n$ consecutive positive integers whose sum is a prime number.
LMT Team Rounds 2010-20, 2010
[b]p1.[/b] I open my $2010$-page dictionary, whose pages are numbered $ 1$ to $2010$ starting on page $ 1$ on the right side of the spine when opened, and ending with page $2010$ on the left. If I open to a random page, what is the probability that the two page numbers showing sum to a multiple of $6$?
[b]p2.[/b] Let $A$ be the number of positive integer factors of $128$.
Let $B$ be the sum of the distinct prime factors of $135$.
Let $C$ be the units’ digit of $381$.
Let $D$ be the number of zeroes at the end of $2^5\cdot 3^4 \cdot 5^3 \cdot 7^2\cdot 11^1$.
Let $E$ be the largest prime factor of $999$.
Compute $\sqrt[3]{\sqrt{A + B} +\sqrt[3]{D^C+E}}$.
[b]p3. [/b] The root mean square of a set of real numbers is defined to be the square root of the average of the squares of the numbers in the set. Determine the root mean square of $17$ and $7$.
[b]p4.[/b] A regular hexagon $ABCDEF$ has area $1$. The sides$ AB$, $CD$, and $EF$ are extended to form a larger polygon with $ABCDEF$ in the interior. Find the area of this larger polygon.
[b]p5.[/b] For real numbers $x$, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$. For example, $\lfloor 3\rfloor = 3$ and $\lfloor 5.2 \rfloor = 5$. Evaluate $\lfloor -2.5 \rfloor + \lfloor \sqrt 2 \rfloor + \lfloor -\sqrt 2 \rfloor + \lfloor 2.5 \rfloor$.
[b]p6.[/b] The mean of five positive integers is $7$, the median is $8$, and the unique mode is $9$. How many possible sets of integers could this describe?
[b]p7.[/b] How many three digit numbers x are there such that $x + 1$ is divisible by $11$?
[b]p8.[/b] Rectangle $ABCD$ is such that $AD = 10$ and $AB > 10$. Semicircles are drawn with diameters $AD$ and $BC$ such that the semicircles lie completely inside rectangle $ABCD$. If the area of the region inside $ABCD$ but outside both semicircles is $100$, determine the shortest possible distance between a point $X$ on semicircle $AD$ and $Y$ on semicircle $BC$.
[b]p9.[/b] $ 8$ distinct points are in the plane such that five of them lie on a line $\ell$, and the other three points lie off the line, in a way such that if some three of the eight points lie on a line, they lie on $\ell$. How many triangles can be formed using some three of the $ 8$ points?
[b]p10.[/b] Carl has $10$ Art of Problem Solving books, all exactly the same size, but only $9$ spaces in his bookshelf. At the beginning, there are $9$ books in his bookshelf, ordered in the following way.
$A - B - C - D - E - F - G - H - I$
He is holding the tenth book, $J$, in his hand. He takes the books out one-by-one, replacing each with the book currently in his hand. For example, he could take out $A$, put $J$ in its place, then take out $D$, put $A$ in its place, etc. He never takes the same book out twice, and stops once he has taken out the tenth book, which is $G$. At the end, he is holding G in his hand, and his bookshelf looks like this.
$C - I - H - J - F - B - E - D - A$
Give the order (start to finish) in which Carl took out the books, expressed as a $9$-letter string (word).
PS. You had better use hide for answers.
2021 ISI Entrance Examination, 1
There are three cities each of which has exactly the same number of citizens, say $n$. Every citizen in each city has exactly a total of $(n+1)$ friends in the other two cities. Show that there exist three people, one from each city, such that they are friends. We assume that friendship is mutual (that is, a symmetric relation).
2013 Bangladesh Mathematical Olympiad, 6
There are $n$ cities in a country. Between any two cities there is at most one road. Suppose that the total number of roads is $n.$ Prove that there is a city such that starting from there it is possible to come back to it without ever travelling the same road twice.
2017 Iran Team Selection Test, 5
$k,n$ are two arbitrary positive integers. Prove that there exists at least $(k-1)(n-k+1)$ positive integers that can be produced by $n$ number of $k$'s and using only $+,-,\times, \div$ operations and adding parentheses between them, but cannot be produced using $n-1$ number of $k$'s.
[i]Proposed by Aryan Tajmir[/i]
Russian TST 2015, P1
A worm is called an [i]adult[/i] if its length is one meter. In one operation, it is possible to cut an adult worm into two (possibly unequal) parts, each of which immediately becomes a worm and begins to grow at a speed of one meter per hour and stops growing once it reaches one meter in length. What is the smallest amount of time in which it is possible to get $n{}$ adult worms starting with one adult worm? Note that it is possible to cut several adult worms at the same time.
2005 Slovenia National Olympiad, Problem 4
The village chatterboxes are exchanging their gossip by phone every day so that any two of them talk to each other exactly once. A certain day, every chatterbox called up at least one of the other chatterboxes. Show that there exist three chatterboxes such that the first called up the second, the second called up the third, and the third called up the first.
1997 May Olympiad, 3
There are $10000$ equal tiles in the shape of an equilateral triangle. With these little triangles, regular hexagons are formed, without overlaps or gaps. If the regular hexagon that wastes the fewest triangles is formed, how many triangles are left over?
2022 Princeton University Math Competition, 6
A sequence of integers $x_1, x_2, ...$ is [i]double-dipped[/i] if $x_{n+2} = ax_{n+1} + bx_n$ for all $n \ge 1$ and some fixed integers $a, b$. Ri begins to form a sequence by randomly picking three integers from the set $\{1, 2, ..., 12\}$, with replacement. It is known that if Ri adds a term by picking anotherelement at random from $\{1, 2, ..., 12\}$, there is at least a $\frac13$ chance that his resulting four-term sequence forms the beginning of a double-dipped sequence. Given this, how many distinct three-term sequences could Ri have picked to begin with?
2010 CHMMC Winter, 6
Zach rolls five tetrahedral dice, each of whose faces are labeled $1, 2, 3$, and $4$. Compute the probability that the sum of the values of the faces that the dice land on is divisible by $3$.
2018 Singapore Junior Math Olympiad, 5
You are given some equilateral triangles and squares, all with side length 1, and asked to form convex $n$ sided polygons using these pieces. If both types must be used, what are the possible values of $n$, assuming that there is sufficient supply of the pieces?
2018 Mid-Michigan MO, 7-9
[b]p1.[/b] Is it possible to put $9$ numbers $1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9$ in a circle in a way such that the sum of any three circularly consecutive numbers is divisible by $3$ and is, moreover:
a) greater than $9$ ?
b) greater than $15$?
[b]p2.[/b] You can cut the figure below along the sides of the small squares into several (at least two) identical pieces. What is the minimal number of such equal pieces?
[img]https://cdn.artofproblemsolving.com/attachments/8/e/9cd09a04209774dab34bc7f989b79573453f35.png[/img]
[b]p3.[/b] There are $100$ colored marbles in a box. It is known that among any set of ten marbles there are at least two marbles of the same color. Show that the box contains $12$ marbles of the same color.
[b]p4.[/b] Is it possible to color squares of a $ 8\times 8$ board in white and black color in such a way that every square has exactly one black neighbor square separated by a side?
[b]p5.[/b] In a basket, there are more than $80$ but no more than $200$ white, yellow, black, and red balls. Exactly $12\%$ are yellow, $20\%$ are black. Is it possible that exactly $2/3$ of the balls are white?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 All-Russian Olympiad, 4
There are some counters in some cells of $100\times 100$ board. Call a cell [i]nice[/i] if there are an even number of counters in adjacent cells. Can exactly one cell be [i]nice[/i]?
[i]K. Knop[/i]
2021 Iran MO (2nd Round), 5
1400 real numbers are given. Prove that one can choose three of them like $x,y,z$ such that :
$$\left|\frac{(x-y)(y-z)(z-x)}{x^4+y^4+z^4+1}\right| < 0.009$$
2018 Bulgaria EGMO TST, 1
In a qualification football round there are six teams and each two play one versus another exactly once. No two matches are played at the same time. At every moment the difference between the number of already played matches for any two teams is $0$ or $1$. A win is worth $3$ points, a draw is worth $1$ point and a loss is worth $0$ points. Determine the smallest positive integer $n$ for which it is possible that after the $n$-th match all teams have a different number of points and each team has a non-zero number of points.
2022 Olympic Revenge, Problem 3
positive real $C$ is $n-vengeful$ if it is possible to color the cells of an $n \times n$ chessboard such that:
i) There is an equal number of cells of each color.
ii) In each row or column, at least $Cn$ cells have the same color.
a) Show that $\frac{3}{4}$ is $n-vengeful$ for infinitely many values of $n$.
b) Show that it does not exist $n$ such that $\frac{4}{5}$ is $n-vengeful$.
2017 CMIMC Combinatorics, 6
Boris plays a game in which he rolls two standard four-sided dice independently and at random, and at the end of the game receives a number of dollars equal to the product of the two rolled numbers. After the initial roll of both dice, however, he can pay two dollars to reroll one die of choice, and he is allowed to pay to reroll as many times as he wishes. If Boris plays to maximize his expected gain, how much money, in dollars, can he expect to win by playing once?
2023 All-Russian Olympiad, 6
A square grid $100 \times 100$ is tiled in two ways - only with dominoes and only with squares $2 \times 2$. What is the least number of dominoes that are entirely inside some square $2 \times 2$?