Found problems: 14842
2021 Stanford Mathematics Tournament, R6
[b]p21[/b]. If $f = \cos(\sin (x))$. Calculate the sum $\sum^{2021}_{n=0} f'' (n \pi)$.
[b]p22.[/b] Find all real values of $A$ that minimize the difference between the local maximum and local minimum of $f(x) = \left(3x^2 - 4\right)\left(x - A + \frac{1}{A}\right)$.
[b]p23.[/b] Bessie is playing a game. She labels a square with vertices labeled $A, B, C, D$ in clockwise order. There are $7$ possible moves: she can rotate her square $90$ degrees about the center, $180$ degrees about the center, $270$ degrees about the center; or she can flip across diagonal $AC$, flip across diagonal $BD$, flip the square horizontally (flip the square so that vertices A and B are switched and vertices $C$ and $D$ are switched), or flip the square vertically (vertices $B$ and $C$ are switched, vertices $A$ and $D$ are switched). In how many ways can Bessie arrive back at the original square for the first time in $3$ moves?
[b]p24.[/b] A positive integer is called [i]happy [/i] if the sum of its digits equals the two-digit integer formed by its two leftmost digits. Find the number of $5$-digit happy integers.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 NZMOC Camp Selection Problems, 4
Given $2014$ points in the plane, no three of which are collinear, what is the minimum number of line segments that can be drawn connecting pairs of points in such a way that adding a single additional line segment of the same sort will always produce a triangle of three connected points?
2013 AMC 10, 24
Central High School is competing against Northern High School in a backgammon match. Each school has three players, and the contest rules require that each player play two games against each of the other's school's players. The match takes place in six rounds, with three games played simultaneously in each round. In how many different ways can the match be scheduled?
$\textbf{(A)} \ 540 \qquad \textbf{(B)} \ 600 \qquad \textbf{(C)} \ 720 \qquad \textbf{(D)} \ 810 \qquad \textbf{(E)} \ 900$
2021/2022 Tournament of Towns, P2
The fox and pinocchio have grown a tree on the field of miracles with $8$ golden coins. It is known that exactly $3$ of them are counterfeit. All the real coins weigh the same, the counterfeit coins also weigh the same but are lighter. The fox and pinocchio have collected the coins and wish to divide them. The fox is going to give 3 coins to pinocchio, but pinocchio wants to check whether they all are real. Can he check this using $2$ weighings on a balance scale with no weights?
2014 IMO Shortlist, C5
A set of lines in the plane is in [i]general position[/i] if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its [i]finite regions[/i]. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary.
[i]Note[/i]: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.
2000 Saint Petersburg Mathematical Olympiad, 11.3
Every month a forester Ermolay has planted 2000 trees along a fence. On every tree, he has written how many oaks there are among itself and trees at his right and left. This way a sequence of 2000 numbers was created. How many distinct sequences could the forester Ermolay get? (oak is a certain type of tree)
[I]Proposed by A. Khrabrov, D.Rostovski[/i]
2015 China Team Selection Test, 2
Let $G$ be the complete graph on $2015$ vertices. Each edge of $G$ is dyed red, blue or white. For a subset $V$ of vertices of $G$, and a pair of vertices $(u,v)$, define \[ L(u,v) = \{ u,v \} \cup \{ w | w \in V \ni \triangle{uvw} \text{ has exactly 2 red sides} \}\]Prove that, for any choice of $V$, there exist at least $120$ distinct values of $L(u,v)$.
2005 MOP Homework, 2
Exactly one integer is written in each square of an $n$ by $n$ grid, $n \ge 3$. The sum of all of the numbers in any $2 \times 2$ square is even and the sum of all the numbers in any $3 \times 3$ square is even. Find all $n$ for which the sum of all the numbers in the grid is necessarily even.
2020 Caucasus Mathematical Olympiad, 8
Peter wrote $100$ distinct integers on a board. Basil needs to fill the cells of a table $100\times{100}$ with integers so that the sum in each rectangle $1\times{3}$ (either vertical, or horizontal) is equal to one of the numbers written on the board. Find the greatest $n$ such that, regardless of numbers written by Peter, Basil can fill the table so that it would contain each of numbers $(1,2,...,n)$ at least once (and possibly some other integers).
2012 Baltic Way, 6
There are 2012 lamps arranged on a table. Two persons play the following game. In each move the player flips the switch of one lamp, but he must never get back an arrangement of the lit lamps that has already been on the table. A player who cannot move loses. Which player has a winning strategy?
2010 Belarus Team Selection Test, 5.1
The following expression $x^{30} + *x^{29} +...+ *x+8 = 0$ is written on a blackboard. Two players $A$ and $B$ play the following game. $A$ starts the game. He replaces all the asterisks by the natural numbers from $1$ to $30$ (using each of them exactly once). Then player $B$ replace some of" $+$ "by ” $-$ "(by his own choice). The goal of $A$ is to get the equation having a real root greater than $10$, while the goal of $B$ is to get the equation having a real root less that or equal to $10$. If both of the players achieve their goals or nobody of them achieves his goal, then the result of the game is a draw. Otherwise, the player achieving his goal is a winner.
Who of the players wins if both of them play to win?
(I.Bliznets)
2020 Bundeswettbewerb Mathematik, 4
In each cell of a table with $m$ rows and $n$ columns, where $m<n$, we put a non-negative real number such that each column contains at least one positive number.
Show that there is a cell with a positive number such that the sum of the numbers in its row is larger than the sum of the numbers in its column.
2017 Korea Winter Program Practice Test, 3
For a number consists of $0$ and $1$, one can perform the following operation: change all $1$ into $100$, all $0$ into $1$. For all nonnegative integer $n$, let $A_n$ be the number obtained by performing the operation $n$ times on $1$(starts with $100,10011,10011100100,\dots$), and $a_n$ be the $n$-th digit(from the left side) of $A_n$. Prove or disprove that there exists a positive integer $m$ satisfies the following:
For every positive integer $l$, there exists a positive integer $k\le m$ satisfying$$a_{l+k+1}=a_1,\ a_{l+k+2}=a_2,\ \dots,\ a_{l+k+2017}=a_{2017}$$
ABMC Online Contests, 2019 Oct
[b]p1.[/b] Fluffy the Dog is an extremely fluffy dog. Because of his extreme fluffiness, children always love petting Fluffy anywhere. Given that Fluffy likes being petted $1/4$ of the time, out of $120$ random people who each pet Fluffy once, what is the expected number of times Fluffy will enjoy being petted?
[b]p2.[/b] Andy thinks of four numbers $27$, $81$, $36$, and $41$ and whispers the numbers to his classmate Cynthia. For each number she hears, Cynthia writes down every factor of that number on the whiteboard. What is the sum of all the different numbers that are on the whiteboard? (Don't include the same number in your sum more than once)
[b]p3.[/b] Charles wants to increase the area his square garden in his backyard. He increases the length of his garden by $2$ and increases the width of his garden by $3$. If the new area of his garden is $182$, then what was the original area of his garden?
[b]p4.[/b] Antonio is trying to arrange his flute ensemble into an array. However, when he arranges his players into rows of $6$, there are $2$ flute players left over. When he arranges his players into rows of $13$, there are $10$ flute players left over. What is the smallest possible number of flute players in his ensemble such that this number has three prime factors?
[b]p5.[/b] On the AMC $9$ (Acton Math Competition $9$), $5$ points are given for a correct answer, $2$ points are given for a blank answer and $0$ points are given for an incorrect answer. How many possible scores are there on the AMC $9$, a $15$ problem contest?
[b]p6.[/b] Charlie Puth produced three albums this year in the form of CD's. One CD was circular, the second CD was in the shape of a square, and the final one was in the shape of a regular hexagon. When his producer circumscribed a circle around each shape, he noticed that each time, the circumscribed circle had a radius of $10$. The total area occupied by $1$ of each of the different types of CDs can be expressed in the form $a + b\pi + c\sqrt{d}$ where $d$ is not divisible by the square of any prime. Find $a + b + c + d$.
[b]p7.[/b] You are picking blueberries and strawberries to bring home. Each bushel of blueberries earns you $10$ dollars and each bushel of strawberries earns you $8$ dollars. However your cart can only fit $24$ bushels total and has a weight limit of $100$ lbs. If a bushel of blueberries weighs $8$ lbs and each bushel of strawberries weighs $6$ lbs, what is your maximum profit. (You can only pick an integer number of bushels)
[b]p8.[/b] The number $$\sqrt{2218 + 144\sqrt{35} + 176\sqrt{55} + 198\sqrt{77}}$$ can be expressed in the form $a\sqrt5 + b\sqrt7 + c\sqrt{11}$ for positive integers $a, b, c$. Find $abc$.
[b]p9.[/b] Let $(x, y)$ be a point such that no circle passes through the three points $(9,15)$, $(12, 20)$, $(x, y)$, and no circle passes through the points $(0, 17)$, $(16, 19)$, $(x, y)$. Given that $x - y = -\frac{p}{q}$ for relatively prime positive integers $p$, $q$, Find $p + q$.
[b]p10.[/b] How many ways can Alfred, Betty, Catherine, David, Emily and Fred sit around a $6$ person table if no more than three consecutive people can be in alphabetical order (clockwise)?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Contests, 4
We color one of the numbers $1,...,8$ with white or black according to the following rules:
i) number $4$ gets colored white and one at lest of the following numbers gets colored black
ii) if two numbers $a,b$ are colored in a different color and $a+b\le 8$, then number $a+b$ gets colored black.
iii) if two numbers $a,b$ are colored in a different color and $a\cdot b\le 8$, then number $a\cdot b$ gets colored white.
If by those rules, all numbers get colored, find the color of each number.
2016 APMO, 4
The country Dreamland consists of $2016$ cities. The airline Starways wants to establish some one-way flights between pairs of cities in such a way that each city has exactly one flight out of it. Find the smallest positive integer $k$ such that no matter how Starways establishes its flights, the cities can always be partitioned into $k$ groups so that from any city it is not possible to reach another city in the same group by using at most $28$ flights.
[i]Warut Suksompong, Thailand[/i]
2014 Contests, 2
Let $A$ be a finite set of positive numbers , $B=\{\frac{a+b}{c+d} |a,b,c,d \in A \}$.
Show that: $\left | B \right | \ge 2\left | A \right |^2-1 $,
where $|X| $ be the number of elements of the finite set $X$.
(High School Affiliated to Nanjing Normal University )
2023 Caucasus Mathematical Olympiad, 4
Let $n>k>1$ be positive integers and let $G$ be a graph with $n$ vertices such that among any $k$ vertices, there is a vertex connected to the rest $k-1$ vertices. Find the minimal possible number of edges of $G$.
Proposed by V. Dolnikov
2024 Thailand Mathematical Olympiad, 6
Find all positive integers $n$ such that the elements of
$$\{1,2,...,2n+1\}-\{n+1\}$$ can be partitioned
into two groups with the same number of elements and the same sum of their elements.
2022 Indonesia MO, 4
Given a regular $26$-gon. Prove that for any $9$ vertices of that regular $26$-gon, then there exists three vertices that forms an isosceles triangle.
2008 Spain Mathematical Olympiad, 3
Every point in the plane is coloured one of seven distinct colours. Is there an inscribed trapezoid whose vertices are all of the same colour?
2018 Regional Olympiad of Mexico Northwest, 2
Alicia and Bob take turns writing words on a blackboard.
The rules are as follows:
a) Any word that has been written cannot be rewritten.
b) A player can only write a permutation of the previous word, or can simply simply remove one letter (whatever you want) from the previous word.
c) The first person who cannot write another word loses.
If Alice starts by typing the word ''Olympics" and Bob's next turn, who, do you think, has a winning strategy and what is it?
2014 IMO, 6
A set of lines in the plane is in [i]general position[/i] if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its [i]finite regions[/i]. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary.
[i]Note[/i]: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.
2011 China Girls Math Olympiad, 4
A tennis tournament has $n>2$ players and any two players play one game against each other (ties are not allowed). After the game these players can be arranged in a circle, such that for any three players $A,B,C$, if $A,B$ are adjacent on the circle, then at least one of $A,B$ won against $C$. Find all possible values for $n$.
2010 Kazakhstan National Olympiad, 2
Exactly $4n$ numbers in set $A= \{ 1,2,3,...,6n \} $ of natural numbers painted in red, all other in blue.
Proved that exist $3n$ consecutive natural numbers from $A$, exactly $2n$ of which numbers is red.