This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2018 Swedish Mathematical Competition, 3

Let m be a positive integer. An $m$-[i]pattern [/i] is a sequence of $m$ symbols of strict inequalities. An $m$-pattern is said to be [i]realized [/i] by a sequence of $m + 1$ real numbers when the numbers meet each of the inequalities in the given order. (For example, the $5$-pattern $ <, <,>, < ,>$ is realized by the sequence of numbers $1, 4, 7, -3, 1, 0$.) Given $m$, which is the least integer $n$ for which there exists any number sequence $x_1,... , x_n$ such that each $m$-pattern is realized by a subsequence $x_{i_1},... , x_{i_{m + 1}}$ with $1 \le i_1 <... < i_{m + 1} \le n$?

2018 All-Russian Olympiad, 8

The board used for playing a game consists of the left and right parts. In each part there are several fields and there’re several segments connecting two fields from different parts (all the fields are connected.) Initially, there is a violet counter on a field in the left part, and a purple counter on a field in the right part. Lyosha and Pasha alternatively play their turn, starting from Pasha, by moving their chip (Lyosha-violet, and Pasha-purple) over a segment to other field that has no chip. It’s prohibited to repeat a position twice, i.e. can’t move to position that already been occupied by some earlier turns in the game. A player losses if he can’t make a move. Is there a board and an initial positions of counters that Pasha has a winning strategy?

2015 CHMMC (Fall), 6

The icosahedron is a convex, regular polyhedron consisting of $20$ equilateral triangle for faces. A particular icosahedron given to you has labels on each of its vertices, edges, and faces. Each minute, you uniformly at random pick one of the labels on the icosahedron. If the label is on a vertex, you remove it. If the label is on an edge, you delete the label on the edge along with any labels still on the vertices of that edge. If the label is on a face, you delete the label on the face along with any labels on the edges and vertices which make up that face. What is the expected number of minutes that pass before you have removed all labels from the icosahedron?

ABMC Team Rounds, 2023

[u]Round 1[/u] [b]1.1.[/b] A classroom has $29$ students. A teacher needs to split up the students into groups of at most $4$. What is the minimum number of groups needed? [b]1.2.[/b] On his history map quiz, Eric recalls that Sweden, Norway and Finland are adjacent countries, but he has forgotten which is which, so he labels them in random order. The probability that he labels all three countries correctly can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]1.3.[/b] In a class of $40$ sixth graders, the class average for their final test comes out to be $90$ (out of a $100$). However, a student brings up an issue with problem $5$, and $10$ students receive credit for this question, bringing the class average to a $90.75$. How many points was problem $5$ worth? [u]Round 2[/u] [b]2.1.[/b] Compute $1 - 2 + 3 - 4 + ... - 2022 + 2023$. [b]2.2.[/b] In triangle $ABC$, $\angle ABC = 75^o$. Point $D$ lies on side $AC$ such that $BD = CD$ and $\angle BDC$ is a right angle. Compute the measure of $\angle A$. [b]2.3.[/b] Joe is rolling three four-sided dice each labeled with positive integers from $1$ to $4$. The probability the sum of the numbers on the top faces of the dice is $6$ can be written as $\frac{p}{q}$ where $p$ and $q$ are relatively prime integers. Find $p + q$. [u]Round 3[/u] [b]3.1.[/b] For positive integers $a, b, c, d$ that satisfy $a + b + c + d = 23$, what is the maximum value of $abcd$? [b]3.2.[/b] A buckball league has twenty teams. Each of the twenty teams plays exactly five games with each of the other teams. If each game takes 1 hour and thirty minutes, then how many total hours are spent playing games? [b]3.3.[/b] For a triangle $\vartriangle ABC$, let $M, N, O$ be the midpoints of $AB$, $BC$, $AC$, respectively. Let $P, Q, R$ be points on $AB$, $BC$, $AC$ such that $AP =\frac13 AB$, $BQ =\frac13 BC$, and $CR =\frac13 AC$. The ratio of the areas of $\vartriangle MNO$ and $\vartriangle P QR$ can be expressed as $\frac{m}{n}$ , where $ m$ and $n$ are relatively prime positive integers. Find $m + n$. [u]Round 4[/u] [b]4.1.[/b] $2023$ has the special property that leaves a remainder of $1$ when divided by $2$, $21$ when divided by $22$, and $22$ when divided by $23$. Let $n$ equal the lowest integer greater than $2023$ with the above properties. What is $n$? [b]4.2.[/b] Ants $A, B$ are on points $(0, 0)$ and $(3, 3)$ respectively, and ant A is trying to get to $(3, 3)$ while ant $B$ is trying to get to $(0, 0)$. Every second, ant $A$ will either move up or right one with equal probability, and ant $B$ will move down or left one with equal probability. The probability that the ants will meet each other be $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a + b$. [b]4.3.[/b] Find the number of trailing zeros of $100!$ in base $ 49$. PS. You should use hide for answers. Rounds 5-9 have been posted [url=https://artofproblemsolving.com/community/c3h3129723p28347714]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Polish MO Finals, 1

Given a triplet we perform on it the following operation. We choose two numbers among them and change them into their sum and product, left number stays unchanged. Can we, starting from triplet $(3,4,5)$ and performing above operation, obtain again a triplet of numbers which are lengths of right triangle?

2015 Regional Olympiad of Mexico Center Zone, 3

A board of size $2015 \times 2015$ is covered with sub-boards of size $2 \times 2$, each of which is painted like chessboard. Each sub-board covers exactly $4$ squares of the board and each square of the board is covered with at least one square of a sub-board (the painted of the sub-boards can be of any shape). Prove that there is a way to cover the board in such a way that there are exactly $2015$ black squares visible. What is the maximum number of visible black squares?

1991 Cono Sur Olympiad, 1

A game consists in $9$ coins (blacks or whites) arrenged in the following position (see picture 1). If you choose $1$ coin on the border of the square, this coin and it's neighbours change their color. If you choose the coin at the centre, it doesn't change it's color, but the other $8$ coins do. Here is an example of $9$ white coins, and the changes of their colors, choosing the coin said: (see picture 2). Is it possible, starting with $9$ white coins, to have $9$ black coins?.

2017 Estonia Team Selection Test, 7

Let $n$ be a positive integer. In how many ways can an $n \times n$ table be filled with integers from $0$ to $5$ such that a) the sum of each row is divisible by $2$ and the sum of each column is divisible by $3$ b) the sum of each row is divisible by $2$, the sum of each column is divisible by $3$ and the sum of each of the two diagonals is divisible by $6$?

2020 Silk Road, 4

Prove that for any natural number $ m $ there exists a natural number $ n $ such that any $ n $ distinct points on the plane can be partitioned into $ m $ non-empty sets whose [i]convex hulls[/i] have a common point. The [i] convex hull [/i] of a finite set $ X $ of points on the plane is the set of points lying inside or on the boundary of at least one convex polygon with vertices in $ X $, including degenerate ones, that is, the segment and the point are considered convex polygons. No three vertices of a convex polygon are collinear. The polygon contains its border.

2020 Iran RMM TST, 5

A $9\times 9$ table is filled with zeroes.In every step we can either take a row add $1$ to every cell and shift it one unit to right or take a column reduce every cell by $1$ and shift it one cell down. Can the table with the top right $-1$ and bottom left $+1$ and all other cells zero be reached?

2019 Vietnam TST, P1

In a country there are $n\geq 2$ cities. Any two cities has exactly one two-way airway. The government wants to license several airlines to take charge of these airways with such following conditions: i) Every airway can be licensed to exactly one airline. ii) By choosing one arbitrary airline, we can move from a city to any other cities, using only flights from this airline. What is the maximum number of airlines that the government can license to satisfy all of these conditions?

2023 Brazil National Olympiad, 1

A positive integer is called [i]vaivém[/i] when, considering its representation in base ten, the first digit from left to right is greater than the second, the second is less than the third, the third is bigger than the fourth and so on alternating bigger and smaller until the last digit. For example, $2021$ is [i]vaivém[/i], as $2 > 0$ and $0 < 2$ and $2 > 1$. The number $2023$ is not [i]vaivém[/i], as $2 > 0$ and $0 < 2$, but $2$ is not greater than $3$. a) How many [i]vaivém[/i] positive integers are there from $2000$ to $2100$? b) What is the largest [i]vaivém[/i] number without repeating digits? c) How many distinct $7$-digit numbers formed by all the digits $1, 2, 3, 4, 5, 6$ and $7$ are [i]vaivém[/i]?

2017 All-Russian Olympiad, 3

There are $100$ dwarfes with weight $1,2,...,100$. They sit on the left riverside. They can not swim, but they have one boat with capacity 100. River has strong river flow, so every dwarf has power only for one passage from right side to left as oarsman. On every passage can be only one oarsman. Can all dwarfes get to right riverside?

2016 Dutch IMO TST, 4

Tags: set , combinatorics
Determine the number of sets $A = \{a_1,a_2,...,a_{1000}\}$ of positive integers satisfying $a_1 < a_2 <...< a_{1000} \le 2014$, for which we have that the set $S = \{a_i + a_j | 1 \le i, j \le 1000$ with $i + j \in A\}$ is a subset of $A$.

1951 Moscow Mathematical Olympiad, 201

To prepare for an Olympiad $20$ students went to a coach. The coach gave them $20$ problems and it turned out that (a) each of the students solved two problems and (b) each problem was solved by twostudents. Prove that it is possible to organize the coaching so that each student would discuss one of the problems that (s)he had solved, and so that all problems would be discussed.

2010 LMT, Team Round

[b]p1.[/b] I open my $2010$-page dictionary, whose pages are numbered $ 1$ to $2010$ starting on page $ 1$ on the right side of the spine when opened, and ending with page $2010$ on the left. If I open to a random page, what is the probability that the two page numbers showing sum to a multiple of $6$? [b]p2.[/b] Let $A$ be the number of positive integer factors of $128$. Let $B$ be the sum of the distinct prime factors of $135$. Let $C$ be the units’ digit of $381$. Let $D$ be the number of zeroes at the end of $2^5\cdot 3^4 \cdot 5^3 \cdot 7^2\cdot 11^1$. Let $E$ be the largest prime factor of $999$. Compute $\sqrt[3]{\sqrt{A + B} +\sqrt[3]{D^C+E}}$. [b]p3. [/b] The root mean square of a set of real numbers is defined to be the square root of the average of the squares of the numbers in the set. Determine the root mean square of $17$ and $7$. [b]p4.[/b] A regular hexagon $ABCDEF$ has area $1$. The sides$ AB$, $CD$, and $EF$ are extended to form a larger polygon with $ABCDEF$ in the interior. Find the area of this larger polygon. [b]p5.[/b] For real numbers $x$, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$. For example, $\lfloor 3\rfloor = 3$ and $\lfloor 5.2 \rfloor = 5$. Evaluate $\lfloor -2.5 \rfloor + \lfloor \sqrt 2 \rfloor + \lfloor -\sqrt 2 \rfloor + \lfloor 2.5 \rfloor$. [b]p6.[/b] The mean of five positive integers is $7$, the median is $8$, and the unique mode is $9$. How many possible sets of integers could this describe? [b]p7.[/b] How many three digit numbers x are there such that $x + 1$ is divisible by $11$? [b]p8.[/b] Rectangle $ABCD$ is such that $AD = 10$ and $AB > 10$. Semicircles are drawn with diameters $AD$ and $BC$ such that the semicircles lie completely inside rectangle $ABCD$. If the area of the region inside $ABCD$ but outside both semicircles is $100$, determine the shortest possible distance between a point $X$ on semicircle $AD$ and $Y$ on semicircle $BC$. [b]p9.[/b] $ 8$ distinct points are in the plane such that five of them lie on a line $\ell$, and the other three points lie off the line, in a way such that if some three of the eight points lie on a line, they lie on $\ell$. How many triangles can be formed using some three of the $ 8$ points? [b]p10.[/b] Carl has $10$ Art of Problem Solving books, all exactly the same size, but only $9$ spaces in his bookshelf. At the beginning, there are $9$ books in his bookshelf, ordered in the following way. $A - B - C - D - E - F - G - H - I$ He is holding the tenth book, $J$, in his hand. He takes the books out one-by-one, replacing each with the book currently in his hand. For example, he could take out $A$, put $J$ in its place, then take out $D$, put $A$ in its place, etc. He never takes the same book out twice, and stops once he has taken out the tenth book, which is $G$. At the end, he is holding G in his hand, and his bookshelf looks like this. $C - I - H - J - F - B - E - D - A$ Give the order (start to finish) in which Carl took out the books, expressed as a $9$-letter string (word). PS. You had better use hide for answers.

2021 China Team Selection Test, 5

Let $n$ be a positive integer and $a_1,a_2,\ldots a_{2n+1}$ be positive reals. For $k=1,2,\ldots ,2n+1$, denote $b_k = \max_{0\le m\le n}\left(\frac{1}{2m+1} \sum_{i=k-m}^{k+m} a_i \right)$, where indices are taken modulo $2n+1$. Prove that the number of indices $k$ satisfying $b_k\ge 1$ does not exceed $2\sum_{i=1}^{2n+1} a_i$.

1986 Bulgaria National Olympiad, Problem 4

Find the smallest integer $n\ge3$ for which there exists an $n$-gon and a point within it such that, if a light bulb is placed at that point, on each side of the polygon there will be a point that is not lightened. Show that for this smallest value of $n$ there always exist two points within the $n$-gon such that the bulbs placed at these points will lighten up the whole perimeter of the $n$-gon.

2018 PUMaC Combinatorics B, 7

How many ways are there to color the $8$ regions of a three-set Venn Diagram with $3$ colors such that each color is used at least once? Two colorings are considered the same if one can be reached from the other by rotation and/or reflection.

2024 Bulgarian Autumn Math Competition, 12.4

Let $L$ be a figure made of $3$ squares, a right isosceles triangle and a quarter circle (all unit sized) as shown below: [img]https://wiki-images.artofproblemsolving.com//f/f9/Weirwiueripo.png[/img] Prove that any $18$ points in the plane can be covered with copies of $L$, which don't overlap (copies of $L$ may be rotated or flipped)

2021-IMOC, C4

There is a city with many houses, where the houses are connected by some two-way roads. It is known that for any two houses $A,B$, there is exactly one house $C$ such that both $A,B$ are connected to $C$. Show that for any two houses not connected directly by a road, they have the same number of roads adjacent to them. [i]ST[/i]

2014 Romania Team Selection Test, 3

Let $n \in \mathbb{N}$ and $S_{n}$ the set of all permutations of $\{1,2,3,...,n\}$. For every permutation $\sigma \in S_{n}$ denote $I(\sigma) := \{ i: \sigma (i) \le i \}$. Compute the sum $\sum_ {\sigma \in S_{n}} \frac{1}{|I(\sigma )|} \sum_ {i \in I(\sigma)} (i+ \sigma(i))$.

2000 Pan African, 3

A company has five directors. The regulations of the company require that any majority (three or more) of the directors should be able to open its strongroom, but any minority (two or less) should not be able to do so. The strongroom is equipped with ten locks, so that it can only be opened when keys to all ten locks are available. Find all positive integers $n$ such that it is possible to give each of the directors a set of keys to $n$ different locks, according to the requirements and regulations of the company.

Kvant 2023, M2737

All the divisors of a) $8\cdot 10^6$ and b) $360^{10}$ are written on a board. At a move, we can take two numbers, neither of which is divisible by the other, and replace them with their greatest common divisor and lowest common multiple. At some point, we will no longer be able to perform new operations. How many different numbers will be on the board at this moment? [i]Proposed by V. Bragin[/i]

1966 German National Olympiad, 2

On a dance evening, each of the gentlemen present has sex with at least one of the ladies present danced and each of the ladies present danced with at least one of the gentlemen present. No gentleman has sex with every lady present and no lady has sex with every gentleman present danced. It must be proven that there were two such ladies and two such gentlemen among those present has that that evening each of the two ladies with exactly one of the two men, and each of the both men danced with exactly one of the two women. It is assumed that the dance evening did not take place without ladies and gentlemen, i.e. the crowd, which consists of all the ladies and gentlemen present, is not empty. [hide=original wording]An einem Tanzabend hat jeder der anwesenden Herren mit mindestens einer der anwesenden Damen getanzt und jede der anwesenden Damen mit mindestens einem der anwesenden Herren. Kein Herr hat mit jeder der anwesenden Damen und keine Dame mit jedem der anwesenden Herren getanzt. Es ist zu beweisen, dass es unter den Anwesenden zwei solche Damen und zwei solche Herren gegeben hat, dass an dem Abend jede der beiden Damen mit genau einem der beiden Herren, und jeder der beiden Herren mit genau einer der beiden Damen getanzt hat. Es wird vorausgesetzt, dass der Tanzabend nicht ohne Damen und Herren stattgefunden hat, d.h., die Menge, die aus allen anwesenden Damen und Herren besteht, ist nicht leer.[/hide]