This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2009 Chile National Olympiad, 6

There are $n \ge 6$ green points in the plane, such that no $3$ of them are collinear. Suppose further that $6$ of these points are the vertices of a convex hexagon. Prove that there are $5$ green points that form a pentagon that does not contain any other green point inside.

2011 Tournament of Towns, 4

A subset of a student group is called an [i]ideal company[/i] if 1) in this subset, all girls are liked by all young men, 2) no one can be added to this subset without violating condition $1$. In a certain group, $9$ female students and $15$ students study. Warden of the group made a list of all kinds of ideal companies in this group. What is the largest number of companies on this list?

2017 Israel National Olympiad, 7

A table with $m$ rows and $n$ columns is given. In each cell of the table an integer is written. Heisuke and Oscar play the following game: at the beginning of each turn, Heisuke may choose to swap any two columns. Then he chooses some rows and writes down a new row at the bottom of the table, with each cell consisting the sum of the corresponding cells in the chosen rows. Oscar then deletes one row chosen by Heisuke (so that at the end of each turn there are exactly $m$ rows). Then the next turn begins and so on. Prove that Heisuke can assure that, after some finite amount of turns, no number in the table is smaller than the number to the number on his right. Example: If we begin with $(1,1,1),(6,5,4),(9,8,7)$, Heisuke may choose to swap the first and third column to get $(1,1,1),(4,5,6),(7,8,9)$. Then he chooses the first and second rows to obtain $(1,1,1),(4,5,6),(7,8,9),(5,6,7)$. Then Oscar has to delete either the first or the second row, let's say the second. We get $(1,1,1),(7,8,9),(5,6,7)$ and Heisuke wins.

2013 ELMO Shortlist, 6

A $4\times4$ grid has its 16 cells colored arbitrarily in three colors. A [i]swap[/i] is an exchange between the colors of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry, regardless of the grid's initial coloring. [i]Proposed by Matthew Babbitt[/i]

Russian TST 2018, P1

Find all positive $r{}$ satisfying the following condition: For any $d > 0$, there exist two circles of radius $r{}$ in the plane that do not contain lattice points strictly inside them and such that the distance between their centers is $d{}$.

2017 Bulgaria EGMO TST, 1

Prove that every convex polygon has at most one triangulation consisting entirely of acute triangles.

2023 JBMO Shortlist, C1

Given is a square board with dimensions $2023 \times 2023$, in which each unit cell is colored blue or red. There are exactly $1012$ rows in which the majority of cells are blue, and exactly $1012$ columns in which the majority of cells are red. What is the maximal possible side length of the largest monochromatic square?

2021 Indonesia TST, N

For every positive integer $n$, let $p(n)$ denote the number of sets $\{x_1, x_2, \dots, x_k\}$ of integers with $x_1 > x_2 > \dots > x_k > 0$ and $n = x_1 + x_3 + x_5 + \dots$ (the right hand side here means the sum of all odd-indexed elements). As an example, $p(6) = 11$ because all satisfying sets are as follows: $$\{6\}, \{6, 5\}, \{6, 4\}, \{6, 3\}, \{6, 2\}, \{6, 1\}, \{5, 4, 1\}, \{5, 3, 1\}, \{5, 2, 1\}, \{4, 3, 2\}, \{4, 3, 2, 1\}.$$ Show that $p(n)$ equals to the number of partitions of $n$ for every positive integer $n$.

1964 Spain Mathematical Olympiad, 3

A convex polygon of $n$ sides is considered. All its diagonals are drawn and we suppose that any three of them can only intersect on a vertex and that there is no pair of parallel diagonals. Under these conditions, we wish to compute a) The total number of intersection points of these diagonals, excluding the vertices. b) How many points, of these intersections, lie inside the polygon and how many lie outside.

2012 All-Russian Olympiad, 4

In a city's bus route system, any two routes share exactly one stop, and every route includes at least four stops. Prove that the stops can be classified into two groups such that each route includes stops from each group.

2024 Pan-African, 3

Given an integer \( n \geq 1 \), Jo-Ané alternately writes crosses (\( \mathcal{X} \)) and circles (\( \mathcal{O}\)) in the cells of a square grid with \( 2n + 1 \) rows and \( 2n + 1 \) columns: she first writes a cross in a cell, then a circle in a second cell, then a cross in a third cell, and so on. When the table is completely filled, her score is calculated as the sum \( \mathcal{X}+ \mathcal{O} \), where \( \mathcal{X} \) is the number of rows containing more crosses than circles and \( \mathcal{O} \) is the number of columns containing more circles than crosses. Determine, in terms of \( n \), the highest possible score that Jo-Ané can obtain..

2022 Mexican Girls' Contest, 2

In the training of a state, the coach proposes a game. The coach writes four real numbers on the board in order from least to greatest: $a < b < c < d$. Each Olympian draws the figure on the right in her notebook and arranges the numbers inside the corner shapes, however she wants, putting a number on each one. Once arranged, on each segment write the square of the difference of the numbers at its ends. Then, add the $4$ numbers obtained. [img]https://cdn.artofproblemsolving.com/attachments/9/a/ea348c637ae266c908e0b97e64605808b3b1d2.png[/img] For example, if Vania arranges them as in the figure on the right, then the result would be $$ (c - b)^2 + (b- a)^2 + (a - d)^2 + (d - c)^2.$$ [img]https://cdn.artofproblemsolving.com/attachments/8/b/9c5375d66a4a6344b2bce333534fa7fac2ad6c.png[/img] The Olympians with the lowest result win. In what ways can you arrange the numbers to win? Give all the possible solutions.

2022 Turkey Junior National Olympiad, 2

In a school with $101$ students, each student has at least one friend among the other students. Show that for every integer $1<n<101$, a group of $n$ students can be selected from this school in such a way that each selected student has at least one friend among the other selected students.

KoMaL A Problems 2022/2023, A.836

For every \(i \in \mathbb{N}\) let \(A_i\), \(B_i\) and \(C_i\) be three finite and pairwise disjoint subsets of \(\mathbb{N}\). Suppose that for every pairwise disjoint sets \(A\), \(B\) and \( C\) with union \(\mathbb N\) there exists \(i\in \mathbb{N}\) such that \(A_i \subset A\), \(B_i \subset B\) and \(C_i \subset C\). Prove that there also exists a finite \(S\subset \mathbb{N}\) such that for every pairwise disjoint sets \(A\), \(B\) and \(C\) with union $\mathbb N$ there exists \(i\in S\) such that \(A_i \subset A\), \(B_i \subset B\) and \(C_i \subset C\). [i]Submitted by András Imolay, Budapest[/i]

2011 Pre-Preparation Course Examination, 4

A star $K_{1,3}$ is called a paw. suppose that $G$ is a graph without any induced paws. prove that $\chi(G)\le(\omega(G))^2$. (15 points)

1994 Tournament Of Towns, (402) 4

Ten coins are placed in a circle, showing “heads” (the tails are down). Two moves are allowed: (a) turn over four consecutively placed coins; (b) turn over four coins placed as $XX OXX$ ($X$ is one of the coins to be turned over, $O$ is not touched). Is it possible to have all ten coins showing “tails” after a finite sequence of such moves? (A Tolpygo)

2017 Federal Competition For Advanced Students, 3

Anna and Berta play a game in which they take turns in removing marbles from a table. Anna takes the first turn. At the beginning of a turn there are n ≥ 1 marbles on the table, then the player whose turn is removes k marbles, where k ≥ 1 either is an even number with $k \le \frac{n}{2}$ or an odd number with $ \frac{n}{2}\le k \le n$. A player wins the game if she removes the last marble from the table. Determine the smallest number $N\ge100000$ which Berta has wining strategy. [i]proposed by Gerhard Woeginger[/i]

2023 Bulgarian Autumn Math Competition, 12.4

A set of points in the plane is called $\textit{good}$ if the distance between any two points in it is at most $1$. Let $f(n, d)$ be the largest positive integer such that in any $\textit{good}$ set of $3n$ points, there is a circle of diameter $d$, which contains at least $f(n, d)$ points. Prove that there exists a positive real $\epsilon$, such that for all $d \in (1-\epsilon, 1)$, the value of $f(n, d)$ does not depend on $d$ and find that value as a function of $n$.

2022-IMOC, C1

Given a positive integer $k$, a pigeon and a seagull play a game on an $n\times n$ board. The pigeon goes first, and they take turns doing the operations. The pigeon will choose $m$ grids and lay an egg in each grid he chooses. The seagull will choose a $k\times k$ grids and eat all the eggs inside them. If at any point every grid in the $n\times n $ board has an egg in it, then the pigeon wins. Else, the seagull wins. For every integer $n\geq k$, find all $m$ such that the pigeon wins. [i]Proposed by amano_hina[/i]

2003 Rioplatense Mathematical Olympiad, Level 3, 3

Without overlapping, hexagonal tiles are placed inside an isosceles right triangle of area $1$ whose hypotenuse is horizontal. The tiles are similar to the figure below, but are not necessarily all the same size.[asy] unitsize(.85cm); draw((0,0)--(1,0)--(1,1)--(2,2)--(-1,2)--(0,1)--(0,0),linewidth(1)); draw((0,2)--(0,1)--(1,1)--(1,2),dashed); label("\footnotesize $a$",(0.5,0),S); label("\footnotesize $a$",(0,0.5),W); label("\footnotesize $a$",(1,0.5),E); label("\footnotesize $a$",(0,1.5),E); label("\footnotesize $a$",(1,1.5),W); label("\footnotesize $a$",(-0.5,2),N); label("\footnotesize $a$",(0.5,2),N); label("\footnotesize $a$",(1.5,2),N); [/asy] The longest side of each tile is parallel to the hypotenuse of the triangle, and the horizontal side of length $a$ of each tile lies between this longest side of the tile and the hypotenuse of the triangle. Furthermore, if the longest side of a tile is farther from the hypotenuse than the longest side of another tile, then the size of the first tile is larger or equal to the size of the second tile. Find the smallest value of $\lambda$ such that every such configuration of tiles has a total area less than $\lambda$.

KoMaL A Problems 2022/2023, A. 833

Some lattice points in the Cartesian coordinate system are colored red, the rest of the lattice points are colored blue. Such a coloring is called [i]finitely universal[/i], if for any finite, non-empty $A\subset \mathbb Z$ there exists $k\in\mathbb Z$ such that the point $(x,k)$ is colored red if and only if $x\in A$. $a)$ Does there exist a finitely universal coloring such that each row has finitely many lattice points colored red, each row is colored differently, and the set of lattice points colored red is connected? $b)$ Does there exist a finitely universal coloring such that each row has a finite number of lattice points colored red, and both the set of lattice points colored red and the set of lattice points colored blue are connected? A set $H$ of lattice points is called [i]connected[/i] if, for any $x,y\in H$, there exists a path along the grid lines that passes only through lattice points in $H$ and connects $x$ to $y$. [i]Submitted by Anett Kocsis, Budapest[/i]

1985 All Soviet Union Mathematical Olympiad, 411

The parallelepiped is constructed of the equal cubes. Three parallelepiped faces, having the common vertex are painted. Exactly half of all the cubes have at least one face painted. What is the total number of the cubes?

2012 Mid-Michigan MO, 7-9

[b]p1.[/b] We say that integers $a$ and $b$ are [i]friends [/i] if their product is a perfect square. Prove that if $a$ is a friend of $b$, then $a$ is a friend of $gcd (a, b)$. [b]p2.[/b] On the island of knights and liars, a traveler visited his friend, a knight, and saw him sitting at a round table with five guests. "I wonder how many knights are among you?" he asked. " Ask everyone a question and find out yourself" advised him one of the guests. "Okay. Tell me one: Who are your neighbors?" asked the traveler. This question was answered the same way by all the guests. "This information is not enough!" said the traveler. "But today is my birthday, do not forget it!" said one of the guests. "Yes, today is his birthday!" said his neighbor. Now the traveler was able to find out how many knights were at the table. Indeed, how many of them were there if [i]knights always tell the truth and liars always lie[/i]? [b]p3.[/b] A rope is folded in half, then in half again, then in half yet again. Then all the layers of the rope were cut in the same place. What is the length of the rope if you know that one of the pieces obtained has length of $9$ meters and another has length $4$ meters? [b]p4.[/b] The floor plan of the palace of the Shah is a square of dimensions $6 \times 6$, divided into rooms of dimensions $1 \times 1$. In the middle of each wall between rooms is a door. The Shah orders his architect to eliminate some of the walls so that all rooms have dimensions $2 \times 1$, no new doors are created, and a path between any two rooms has no more than $N$ doors. What is the smallest value of $N$ such that the order could be executed? [b]p5.[/b] There are $10$ consecutive positive integers written on a blackboard. One number is erased. The sum of remaining nine integers is $2011$. Which number was erased? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Junior Macedonian Mathematical Olympiad, P4

An equilateral triangle $T$ with side length $2022$ is divided into equilateral unit triangles with lines parallel to its sides to obtain a triangular grid. The grid is covered with figures shown on the image below, which consist of $4$ equilateral unit triangles and can be rotated by any angle $k \cdot 60^{\circ}$ for $k \in \left \{1,2,3,4,5 \right \}$. The covering satisfies the following conditions: $1)$ It is possible not to use figures of some type and it is possible to use several figures of the same type. The unit triangles in the figures correspond to the unit triangles in the grid. $2)$ Every unit triangle in the grid is covered, no two figures overlap and every figure is fully contained in $T$. Determine the smallest possible number of figures of type $1$ that can be used in such a covering. [i]Proposed by Ilija Jovcheski[/i]

1995 Mexico National Olympiad, 2

Consider 6 points on a plane such that 8 of the distances between them are equal to 1. Prove that there are at least 3 points that form an equilateral triangle.