This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2015 MMATHS, 4

For any nonnegative integer $r$, let $S_r$ be a function whose domain is the natural numbers that satisfies $$S_r(p^{\alpha}) = \begin{cases} 0\,\, if \,\, if \,\, p \le r \\ p^{{\alpha}-1}(p -r) \,\, if \,\,p > r \end{cases}$$ for all primes $p$ and positive integers ${\alpha}$, and that $S_r(ab) = S_r(a)Sr_(b)$ whenever $a$ and $b$ are relatively prime. Now, suppose there are $n$ squirrels at a party. Each squirrel is labeled with a unique number from the set $\{1, 2,..., n\}$. Two squirrels are friends with each other if and only if the difference between their labels is relatively prime to $n$. For example, if $n = 10$, then the squirrels with labels $3$ and $10$ are friends with each other because $10 - 3 = 7$, and $7$ is relatively prime to $10$. Fix a positive integer $m$. Define a clique of size $m$ to be any set of m squirrels at the party with the property that any two squirrels in the clique are friends with each other. Determine, with proof, a formula (using $S_r$) for the number of cliques of size $m$ at the squirrel party.

2011 ELMO Shortlist, 4

Consider the infinite grid of lattice points in $\mathbb{Z}^3$. Little D and Big Z play a game, where Little D first loses a shoe on an unmunched point in the grid. Then, Big Z munches a shoe-free plane perpendicular to one of the coordinate axes. They continue to alternate turns in this fashion, with Little D's goal to lose a shoe on each of $n$ consecutive lattice points on a line parallel to one of the coordinate axes. Determine all $n$ for which Little D can accomplish his goal. [i]David Yang.[/i]

2016 Iran Team Selection Test, 6

In a company of people some pairs are enemies. A group of people is called [i]unsociable[/i] if the number of members in the group is odd and at least $3$, and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most $2015$ unsociable groups, prove that it is possible to partition the company into $11$ parts so that no two enemies are in the same part. [i]Proposed by Russia[/i]

1999 Ukraine Team Selection Test, 12

In a group of $n \ge 4$ persons, every three who know each other have a common signal. Assume that these signals are not repeated and that there are $m \ge 1$ signals in total. For any set of four persons in which there are three having a common signal, the fourth person has a common signal with at most one of them. Show that there three persons who have a common signal, such that the number of persons having no signal with anyone of them does not exceed $\left[n+3 -\frac{18m}{n}\right]$

2020/2021 Tournament of Towns, P2

Maria has a balance scale that can indicate which of its pans is heavier or whether they have equal weight. She also has 4 weights that look the same but have masses of 1001, 1002, 1004 and 1005g. Can Maria determine the mass of each weight in 4 weightings? The weights for a new weighing may be picked when the result of the previous ones is known. [i]The Jury[/i] (For the senior paper) The same question when the left pan of the scale is lighter by 1g than the right one, so the scale indicates equality when the mass on the left pan is heavier by 1g than the mass on the right pan. [i]Alexey Tolpygo[/i]

MMATHS Mathathon Rounds, 2016

[u]Round 1[/u] [b]p1.[/b] This year, the Mathathon consists of $7$ rounds, each with $3$ problems. Another math test, Aspartaime, consists of $3$ rounds, each with $5$ problems. How many more problems are on the Mathathon than on Aspartaime? [b]p2.[/b] Let the solutions to $x^3 + 7x^2 - 242x - 2016 = 0 $be $a, b$, and $c$. Find $a^2 + b^2 + c^2$. (You might find it helpful to know that the roots are all rational.) [b]p3.[/b] For triangle $ABC$, you are given $AB = 8$ and $\angle A = 30^o$ . You are told that $BC$ will be chosen from amongst the integers from $1$ to $10$, inclusive, each with equal probability. What is the probability that once the side length $BC$ is chosen there is exactly one possible triangle $ABC$? [u]Round 2 [/u] [b]p4.[/b] It’s raining! You want to keep your cat warm and dry, so you want to put socks, rain boots, and plastic bags on your cat’s four paws. Note that for each paw, you must put the sock on before the boot, and the boot before the plastic bag. Also, the items on one paw do not affect the items you can put on another paw. How many different orders are there for you to put all twelve items of rain footwear on your cat? [b]p5.[/b] Let $a$ be the square root of the least positive multiple of $2016$ that is a square. Let $b$ be the cube root of the least positive multiple of $2016$ that is a cube. What is $ a - b$? [b]p6.[/b] Hypersomnia Cookies sells cookies in boxes of $6, 9$ or $10$. You can only buy cookies in whole boxes. What is the largest number of cookies you cannot exactly buy? (For example, you couldn’t buy $8$ cookies.) [u]Round 3 [/u] [b]p7.[/b] There is a store that sells each of the $26$ letters. All letters of the same type cost the same amount (i.e. any ‘a’ costs the same as any other ‘a’), but different letters may or may not cost different amounts. For example, the cost of spelling “trade” is the same as the cost of spelling “tread,” even though the cost of using a ‘t’ may be different from the cost of an ‘r.’ If the letters to spell out $1$ cost $\$1001$, the letters to spell out $2$ cost $\$1010$, and the letters to spell out $11$ cost $\$2015$, how much do the letters to spell out $12$ cost? [b]p8.[/b] There is a square $ABCD$ with a point $P$ inside. Given that $PA = 6$, $PB = 9$, $PC = 8$. Calculate $PD$. [b]p9.[/b] How many ordered pairs of positive integers $(x, y)$ are solutions to $x^2 - y^2 = 2016$? [u]Round 4 [/u] [b]p10.[/b] Given a triangle with side lengths $5, 6$ and $7$, calculate the sum of the three heights of the triangle. [b]p11. [/b]There are $6$ people in a room. Each person simultaneously points at a random person in the room that is not him/herself. What is the probability that each person is pointing at someone who is pointing back to them? [b]p12.[/b] Find all $x$ such that $\sum_{i=0}^{\infty} ix^i =\frac34$. PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2782837p24446063]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Korea - Final Round, 6

A room has $2017$ boxes in a circle. A set of boxes is [i]friendly[/i] if there are at least two boxes in the set, and for each boxes in the set, if we go clockwise starting from the box, we would pass either $0$ or odd number of boxes before encountering a new box in the set. $30$ students enter the room and picks a set of boxes so that the set is friendly, and each students puts a letter inside all of the boxes that he/she chose. If the set of the boxes which have $30$ letters inside is not friendly, show that there exists two students $A, B$ and boxes $a, b$ satisfying the following condition. (i). $A$ chose $a$ but not $b$, and $B$ chose $b$ but not $a$. (ii). Starting from $a$ and going clockwise to $b$, the number of boxes that we pass through, not including $a$ and $b$, is not an odd number, and none of $A$ or $B$ chose such boxes that we passed.

2017 AIME Problems, 11

Consider arrangements of the $9$ numbers $1, 2, 3, \dots, 9$ in a $3 \times 3$ array. For each such arrangement, let $a_1$, $a_2$, and $a_3$ be the medians of the numbers in rows $1$, $2$, and $3$ respectively, and let $m$ be the median of $\{a_1, a_2, a_3\}$. Let $Q$ be the number of arrangements for which $m = 5$. Find the remainder when $Q$ is divided by $1000$.

2005 Romania Team Selection Test, 4

We consider a polyhedra which has exactly two vertices adjacent with an odd number of edges, and these two vertices are lying on the same edge. Prove that for all integers $n\geq 3$ there exists a face of the polyhedra with a number of sides not divisible by $n$.

2007 China Team Selection Test, 3

Let $ n$ be positive integer, $ A,B\subseteq[0,n]$ are sets of integers satisfying $ \mid A\mid \plus{} \mid B\mid\ge n \plus{} 2.$ Prove that there exist $ a\in A, b\in B$ such that $ a \plus{} b$ is a power of $ 2.$

2001 Hungary-Israel Binational, 1

Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. The edges of $K_{n}(n \geq 3)$ are colored with $n$ colors, and every color is used. Show that there is a triangle whose sides have different colors.

1966 IMO Longlists, 53

Prove that in every convex hexagon of area $S$ one can draw a diagonal that cuts off a triangle of area not exceeding $\frac{1}{6}S.$

2007 IMO Shortlist, 7

Let $ \alpha < \frac {3 \minus{} \sqrt {5}}{2}$ be a positive real number. Prove that there exist positive integers $ n$ and $ p > \alpha \cdot 2^n$ for which one can select $ 2 \cdot p$ pairwise distinct subsets $ S_1, \ldots, S_p, T_1, \ldots, T_p$ of the set $ \{1,2, \ldots, n\}$ such that $ S_i \cap T_j \neq \emptyset$ for all $ 1 \leq i,j \leq p$ [i]Author: Gerhard Wöginger, Austria[/i]

2023 Olympic Revenge, 4

Let $S=\{(x,y,z)\in \mathbb{Z}^3\}$ the set of points with integer coordinates in the space. Gugu has infinitely many solid spheres. All with radii $\ge (\frac{\pi}2)^3$. Is it possible for Gugu to cover all points of $S$ with his spheres?

2019 Durer Math Competition Finals, 6

(Game) At the beginning of the game, the organisers place paper disks on the table, grouped into piles which may contain various numbers of disks. The two players take turns. On a player’s turn, their opponent selects two piles (one if there is only one pile left), and the player must remove some number of disks from one of the piles selected. This means that at least one disk has to be removed, and removing all disks in the pile is also permitted. The player removing the last disk from the table wins. [i]Defeat the organisers in this game twice in a row! A starting position will be given and then you can decide whether you want to go first or second.[/i]

2024 Romanian Master of Mathematics, 3

Given a positive integer $n$, a collection $\mathcal{S}$ of $n-2$ unordered triples of integers in $\{1,2,\ldots,n\}$ is [i]$n$-admissible[/i] if for each $1 \leq k \leq n - 2$ and each choice of $k$ distinct $A_1, A_2, \ldots, A_k \in \mathcal{S}$ we have $$ \left|A_1 \cup A_2 \cup \cdots A_k \right| \geq k+2.$$ Is it true that for all $n > 3$ and for each $n$-admissible collection $\mathcal{S}$, there exist pairwise distinct points $P_1, \ldots , P_n$ in the plane such that the angles of the triangle $P_iP_jP_k$ are all less than $61^{\circ}$ for any triple $\{i, j, k\}$ in $\mathcal{S}$? [i]Ivan Frolov, Russia[/i]

2012 Singapore Senior Math Olympiad, 3

If $46$ squares are colored red in a $9\times 9$ board, show that there is a $2\times 2$ block on the board in which at least $3$ of the squares are colored red.

2023 Estonia Team Selection Test, 5

We say that distinct positive integers $n, m$ are $friends$ if $\vert n-m \vert$ is a divisor of both ${}n$ and $m$. Prove that, for any positive integer $k{}$, there exist $k{}$ distinct positive integers such that any two of these integers are friends.

2020 Brazil Team Selection Test, 3

Determine all positive integers $k$ for which there exist a positive integer $m$ and a set $S$ of positive integers such that any integer $n > m$ can be written as a sum of distinct elements of $S$ in exactly $k$ ways.

2019 Junior Balkan MO, 4

A $5 \times 100$ table is divided into $500$ unit square cells, where $n$ of them are coloured black and the rest are coloured white. Two unit square cells are called [i]adjacent[/i] if they share a common side. Each of the unit square cells has at most two adjacent black unit square cells. Find the largest possible value of $n$.

2007 Junior Macedonian Mathematical Olympiad, 5

We are given an arbitrary $\bigtriangleup ABC$. a) Can we dissect $\bigtriangleup ABC$ in $4$ pieces, from which we can make two triangle similar to $\bigtriangleup ABC$ (each piece can be used only once)? Justify your answer! b) Is it possible that for every positive integer $n \ge 2$ , we are able to dissect $\bigtriangleup ABC$ in $2n$ pieces, from which we can make two triangles similar to $\bigtriangleup ABC$ (each piece can be used only once)? Justify your answer!

2023 Bulgarian Autumn Math Competition, 8.4

In every cell of a board $9 \times 9$ is written an integer. For any $k$ numbers in the same row (column), their sum is also in the same row (column). Find the smallest possible number of zeroes in the board for $a)$ $k=5;$ $b)$ $k=8.$

2023 Swedish Mathematical Competition, 4

Let $f$ be a function that associates a positive integer $(x, y)$ with each pair of positive integers $f(x, y)$. Suppose that $f(x, y) \le xy$ for all positive integers $x$, $y$. Show that there are $2023$ different pairs $(x_1, y_1)$,$...$, $ (x_{2023}, y_{2023}$) such that $$f(x_1, y_1) = f(x_2, y_2) = ....= f(x_{2023}, y_{2023}).$$

2015 EGMO, 2

A [i]domino[/i] is a $2 \times 1$ or $1 \times 2$ tile. Determine in how many ways exactly $n^2$ dominoes can be placed without overlapping on a $2n \times 2n$ chessboard so that every $2 \times 2$ square contains at least two uncovered unit squares which lie in the same row or column.

2017 Dutch IMO TST, 1

Let $n$ be a positive integer. Suppose that we have disks of radii $1, 2, . . . , n.$ Of each size there are two disks: a transparent one and an opaque one. In every disk there is a small hole in the centre, with which we can stack the disks using a vertical stick. We want to make stacks of disks that satisfy the following conditions: $i)$ Of each size exactly one disk lies in the stack. $ii)$ If we look at the stack from directly above, we can see the edges of all of the $n$ disks in the stack. (So if there is an opaque disk in the stack,no smaller disks may lie beneath it.) Determine the number of distinct stacks of disks satisfying these conditions. (Two stacks are distinct if they do not use the same set of disks, or, if they do use the same set of disks and the orders in which the disks occur are different.)