Found problems: 200
2004 Estonia Team Selection Test, 6
Call a convex polyhedron a [i]footballoid [/i] if it has the following properties.
(1) Any face is either a regular pentagon or a regular hexagon.
(2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it).
Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.
2016 BAMO, 4
In an acute triangle $ABC$ let $K,L,$ and $M$ be the midpoints of sides $AB,BC,$ and $CA,$ respectively. From each of $K,L,$ and $M$ drop two perpendiculars to the other two sides of the triangle; e.g., drop perpendiculars from $K$ to sides $BC$ and $CA,$ etc. The resulting $6$ perpendiculars intersect at points $Q,S,$ and $T$ as in the figure to form a hexagon $KQLSMT$ inside triangle $ABC.$ Prove that the area of this hexagon $KQLSMT$ is half of the area of the original triangle $ABC.$
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra; diagram by adihaya*/
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 11.888712276357234, xmax = 17.841346447833423, ymin = 10.61620970860601, ymax = 15.470685507068502; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.);
pair A = (12.488234161849352,12.833838721895551), B = (16.50823416184936,15.093838721895553), C = (16.28823416184936,11.353838721895551), K = (14.498234161849355,13.963838721895552), L = (16.39823416184936,13.223838721895552), M = (14.388234161849356,12.093838721895551), D = (13.615830174638527,13.467760858438725), F = (15.75135711740064,11.562938202365055), G = (15.625830174638523,14.597760858438724), H = (16.435061748056253,13.849907687412797), T = (14.02296781802369,12.74356027153236), Q = (16.032967818023693,13.873560271532357), O = (16.325061748056253,11.979907687412794);
draw(A--B--C--cycle, zzttqq);
draw((13.426050287639166,13.361068683160477)--(13.532742462917415,13.171288796161116)--(13.722522349916774,13.277980971439364)--D--cycle, qqwuqq);
draw((14.054227993863618,12.223925334689998)--(14.133240861538676,12.426796211152979)--(13.930369985075695,12.505809078828037)--(13.851357117400637,12.302938202365056)--cycle, qqwuqq);
draw((16.337846386707046,12.19724654447628)--(16.12050752964356,12.210031183127075)--(16.107722890992765,11.992692326063588)--O--cycle, qqwuqq);
draw((15.830369985075697,11.765809078828037)--(15.627499108612716,11.844821946503092)--(15.54848624093766,11.641951070040111)--F--cycle, qqwuqq);
draw((15.436050287639164,14.491068683160476)--(15.542742462917412,14.301288796161115)--(15.73252234991677,14.407980971439365)--G--cycle, qqwuqq);
draw((16.217722890992764,13.86269232606359)--(16.20493825234197,13.645353469000101)--(16.42227710940546,13.63256883034931)--H--cycle, qqwuqq);
Label laxis; laxis.p = fontsize(10);
xaxis(xmin, xmax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true);
yaxis(ymin, ymax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */
/* draw figures */
draw(A--B, zzttqq);
draw(B--C, zzttqq);
draw(C--A, zzttqq);
draw(M--D);
draw(K--(13.851357117400637,12.302938202365056));
draw(F--L);
draw(L--G);
draw(K--H);
draw(M--O);
/* dots and labels */
dot(A,dotstyle);
label("$A$", (12.52502834296331,12.93568440300881), NE * labelscalefactor);
dot(B,dotstyle);
label("$B$", (16.548187989892043,15.193580123223922), NE * labelscalefactor);
dot(C,dotstyle);
label("$C$", (16.332661580235147,11.457789022504372), NE * labelscalefactor);
dot(K,linewidth(3.pt) + dotstyle);
label("$K$", (14.536608166427676,14.02357961365791), NE * labelscalefactor);
dot(L,linewidth(3.pt) + dotstyle);
label("$L$", (16.43529320388129,13.28463192340569), NE * labelscalefactor);
dot(M,linewidth(3.pt) + dotstyle);
label("$M$", (14.433976542781535,12.155684063298134), NE * labelscalefactor);
dot(D,linewidth(3.pt) + dotstyle);
dot((13.851357117400637,12.302938202365056),linewidth(3.pt) + dotstyle);
dot(F,linewidth(3.pt) + dotstyle);
dot(G,linewidth(3.pt) + dotstyle);
dot(H,linewidth(3.pt) + dotstyle);
dot((15.922967818023695,12.003560271532354),linewidth(3.pt) + dotstyle);
label("$S$", (15.96318773510904,12.063315602016607), NE * labelscalefactor);
dot(T,linewidth(3.pt) + dotstyle);
label("$T$", (14.064502697655428,12.802263292268826), NE * labelscalefactor);
dot(Q,linewidth(3.pt) + dotstyle);
label("$Q$", (16.076082521119794,13.931211152376383), NE * labelscalefactor);
dot(O,linewidth(3.pt) + dotstyle);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
1995 All-Russian Olympiad Regional Round, 9.7
A regular hexagon of side $5$ is cut into unit equilateral triangles by lines parallel to the sides of the hexagon. We call the vertices of these triangles knots. If more than half of all knots are marked, show that there exist five marked knots that lie on a circle.
2013 IMO Shortlist, G5
Let $ABCDEF$ be a convex hexagon with $AB=DE$, $BC=EF$, $CD=FA$, and $\angle A-\angle D = \angle C -\angle F = \angle E -\angle B$. Prove that the diagonals $AD$, $BE$, and $CF$ are concurrent.
2015 Saudi Arabia BMO TST, 2
Find the number of $6$-tuples $(a_1,a_2, a_3,a_4, a_5,a_6)$ of distinct positive integers satisfying the following two conditions:
(a) $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 30$
(b) We can write $a_1,a_2, a_3,a_4, a_5,a_6$ on sides of a hexagon such that after a finite number of time choosing a vertex of the hexagon and adding $1$ to the two numbers written on two sides adjacent to the vertex, we obtain
a hexagon with equal numbers on its sides.
Lê Anh Vinh
2020 Malaysia IMONST 1, 12
A football is made by sewing together some black and white leather
patches. The black patches are regular pentagons of the same size. The white
patches are regular hexagons of the same size. Each pentagon is bordered by 5
hexagons. Each hexagons is bordered by $3$ pentagons and $3$ hexagons. We need $12$ pentagons to make one football.
How many hexagons are needed to make one football?
2016 Saudi Arabia IMO TST, 2
Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$.
Tran Quang Hung
1998 Singapore Team Selection Test, 1
The lengths of the sides of a convex hexagon $ ABCDEF$ satisfy $ AB \equal{} BC$, $ CD \equal{} DE$, $ EF \equal{} FA$. Prove that:
\[ \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}.
\]
2021 International Zhautykov Olympiad, 2
In a convex cyclic hexagon $ABCDEF$, $BC=EF$ and $CD=AF$. Diagonals $AC$ and $BF$ intersect at point $Q,$ and diagonals $EC$ and $DF$ intersect at point $P.$ Points $R$ and $S$ are marked on the segments $DF$ and $BF$ respectively so that $FR=PD$ and $BQ=FS.$ [b]The segments[/b] $RQ$ and $PS$ intersect at point $T.$ Prove that the line $TC$ bisects the diagonal $DB$.
1998 Moldova Team Selection Test, 9
A hexagon is inscribed in a circle of radius $r$. Two of the sides of the hexagon have length $1$, two have length $2$ and two have length $3$. Show that $r$ satisfies the equation $2r^3 - 7r - 3 = 0$.
2012 Denmark MO - Mohr Contest, 5
In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.
1966 IMO Longlists, 53
Prove that in every convex hexagon of area $S$ one can draw a diagonal that cuts off a triangle of area not exceeding $\frac{1}{6}S.$
2019 Saudi Arabia Pre-TST + Training Tests, 1.3
Let $ABCDEF$ be a convex hexagon satisfying $AC = DF, CE = FB$ and $EA = BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.
1987 Polish MO Finals, 6
A plane is tiled with regular hexagons of side $1$. $A$ is a fixed hexagon vertex.
Find the number of paths $P$ such that:
(1) one endpoint of $P$ is $A$,
(2) the other endpoint of $P$ is a hexagon vertex,
(3) $P$ lies along hexagon edges,
(4) $P$ has length $60$, and
(5) there is no shorter path along hexagon edges from $A$ to the other endpoint of $P$.
2017 Costa Rica - Final Round, 1
Let the regular hexagon $ABCDEF$ be inscribed in a circle with center $O$, $N$ be such a point Let $E-N-C$, $M$ a point such that $A- M-C$ and $R$ a point on the circumference, such that $D-N- R$. If $\angle EFR = 90^o$, $\frac{AM}{AC}=\frac{CN}{EC}$ and $AC=\sqrt3$, calculate $AM$.
Notation: $A-B-C$ means than points $A,B,C$ are collinear in that order i.e. $ B$ lies between $ A$ and $C$.
2016 Sharygin Geometry Olympiad, P19
Let $ABCDEF$ be a regular hexagon. Points $P$ and $Q$ on tangents to its circumcircle at $A$ and $D$ respectively are such that $PQ$ touches the minor arc $EF$ of this circle. Find the angle between $PB$ and $QC$.
1984 Tournament Of Towns, (075) T1
In convex hexagon $ABCDEF, AB$ is parallel to $CF, CD$ is parallel to $BE$ and $EF$ is parallel to $AD$. Prove that the areas of triangles $ACE$ and $BDF$ are equal .
LMT Team Rounds 2010-20, 2013 Hexagon
Let $ABC$ be a triangle and $O$ be its circumcircle. Let $A', B', C'$ be the midpoints of minor arcs $AB$, $BC$ and $CA$ respectively. Let $I$ be the center of incircle of $ABC$. If $AB = 13$, $BC = 14$ and $AC = 15$, what is the area of the hexagon $AA'BB'CC'$?
Suppose $m \angle BAC = \alpha$ , $m \angle CBA = \beta$, and $m \angle ACB = \gamma$.
[b]p10.[/b] Let the incircle of $ABC$ be tangent to $AB, BC$, and $AC$ at $J, K, L$, respectively. Compute the angles of triangles $JKL$ and $A'B'C'$ in terms of $\alpha$, $\beta$, and $\gamma$, and conclude that these two triangles are similar.
[b]p11.[/b] Show that triangle $AA'C'$ is congruent to triangle $IA'C'$. Show that $AA'BB'CC'$ has twice the area of $A'B'C'$.
[b]p12.[/b] Let $r = JL/A'C'$ and the area of triangle $JKL$ be $S$. Using the previous parts, determine the area of hexagon $AA'BB'CC'$ in terms of $ r$ and $S$.
[b]p13.[/b] Given that the circumradius of triangle $ABC$ is $65/8$ and that $S = 1344/65$, compute $ r$ and the exact value of the area of hexagon $AA'BB'CC'$.
PS. You had better use hide for answers.
2022 Novosibirsk Oral Olympiad in Geometry, 3
In a regular hexagon, segments with lengths from $1$ to $6$ were drawn as shown in the right figure (the segments go sequentially in increasing length, all the angles between them are right). Find the side length of this hexagon.
[img]https://cdn.artofproblemsolving.com/attachments/3/1/82e4225b56d984e897a43ba1f403d89e5f4736.png[/img]
2023 Austrian MO Beginners' Competition, 2
Let $ABCDEF$ be a regular hexagon with sidelength s. The points $P$ and $Q$ are on the diagonals $BD$ and $DF$, respectively, such that $BP = DQ = s$. Prove that the three points $C$, $P$ and $Q$ are on a line.
[i](Walther Janous)[/i]
2008 Cuba MO, 2
Let $H$ a regular hexagon and let $P$ a point in the plane of $H$. Let $V(P)$ the sum of the distances from $P$ to the vertices of $H$ and let $L(P)$ the sum of the distances from $P$ to the edges of $H$.
a) Find all points $P$ so that $L(P)$ is minimun
b) Find all points $P$ so that $V(P)$ is minimun
1982 IMO, 2
The diagonals $AC$ and $CE$ of the regular hexagon $ABCDEF$ are divided by inner points $M$ and $N$ respectively, so that \[ {AM\over AC}={CN\over CE}=r. \] Determine $r$ if $B,M$ and $N$ are collinear.
Croatia MO (HMO) - geometry, 2023.3
A convex hexagon $ABCDEF$ is given, with each two opposite sides of different lengths and parallel ($AB \parallel DE$, $BC \parallel EF$ and $CD \parallel FA$). If $|AE| = |BD|$ and $|BF| = |CE|$, prove that the hexagon $ABCDEF$ is cyclic.
2014 Brazil Team Selection Test, 4
Let $ABCDEF$ be a convex hexagon with $AB=DE$, $BC=EF$, $CD=FA$, and $\angle A-\angle D = \angle C -\angle F = \angle E -\angle B$. Prove that the diagonals $AD$, $BE$, and $CF$ are concurrent.
2006 Hanoi Open Mathematics Competitions, 6
The figure $ABCDEF$ is a regular hexagon. Find all points $M$ belonging to the hexagon such that
Area of triangle $MAC =$ Area of triangle $MCD$.