This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

LMT Team Rounds 2021+, B14

In the expansion of $(2x +3y)^{20}$, find the number of coefficients divisible by $144$. [i]Proposed by Hannah Shen[/i]

2023 BMT, 3

Find the number of positive integers $n$ less than $10000$ such that there are more $4$’s in the digits of $n + 1$ than in the digits of $n$.

Mid-Michigan MO, Grades 10-12, 2012

[b]p1.[/b] A triangle $ABC$ is drawn in the plane. A point $D$ is chosen inside the triangle. Show that the sum of distances $AD+BD+CD$ is less than the perimeter of the triangle. [b]p2.[/b] In a triangle $ABC$ the bisector of the angle $C$ intersects the side $AB$ at $M$, and the bisector of the angle $A$ intersects $CM$ at the point $T$. Suppose that the segments $CM$ and $AT$ divided the triangle $ABC$ into three isosceles triangles. Find the angles of the triangle $ABC$. [b]p3.[/b] You are given $100$ weights of masses $1, 2, 3,..., 99, 100$. Can one distribute them into $10$ piles having the following property: the heavier the pile, the fewer weights it contains? [b]p4.[/b] Each cell of a $10\times 10$ table contains a number. In each line the greatest number (or one of the largest, if more than one) is underscored, and in each column the smallest (or one of the smallest) is also underscored. It turned out that all of the underscored numbers are underscored exactly twice. Prove that all numbers stored in the table are equal to each other. [b]p5.[/b] Two stores have warehouses in which wheat is stored. There are $16$ more tons of wheat in the first warehouse than in the second. Every night exactly at midnight the owner of each store steals from his rival, taking a quarter of the wheat in his rival's warehouse and dragging it to his own. After $10$ days, the thieves are caught. Which warehouse has more wheat at this point and by how much? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Taiwan TST Round 1, 6

The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a [i]path from $X$ to $Y$[/i] is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called [i]diverse[/i] if no road belongs to two or more paths in the collection. Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$. [i]Proposed by Warut Suksompong, Thailand[/i]

1961 All Russian Mathematical Olympiad, 004

Given a table $4\times 4$. a) Find, how $7$ stars can be put in its fields in such a way, that erasing of two arbitrary lines and two columns will always leave at list one of the stars. b) Prove that if there are less than $7$ stars, You can always find two columns and two rows, such, that if you erase them, no star will remain in the table.

2017 China Northern MO, 4

Let \(Q\) be a set of permutations of \(1,2,...,100\) such that for all \(1\leq a,b \leq 100\), \(a\) can be found to the left of \(b\) and adjacent to \(b\) in at most one permutation in \(Q\). Find the largest possible number of elements in \(Q\).

2001 Saint Petersburg Mathematical Olympiad, 10.7

On the parliament of Sikinia, for any two deputies, there is third deputy, which knows exactly one of the two. Every deputy belongs to one of the two ruling parties. Every day, he president tells a certain group of deputies to change the party that they belong, and all the deputies which which know at least one of the deputies of the group has to change their party too. Prove that, the president can reach any configuration of deputies between two parties.(The president himself isn't a member of the parliament of Sikinia). [I]Proposed by S. Berlov[/i]

2005 Kyiv Mathematical Festival, 3

Two players by turn paint the vertices of triangles on the given picture each with his colour. At the end, each of small triangles is painted by the colour of the majority of its vertices. The winner is one who gets at least 6 triangles of his colour. If both players get at most 5, then it is a draw. Does any of them have winning strategy? If yes, then who wins? \[ \begin{picture}(40,50) \put(2,2){\put(0,0){\line(6,0){42}} \put(7,14){\line(6,0){28}} \put(14,28){\line(6,0){14}} \put(0,0){\line(1,2){21}} \put(14,0){\line(1,2){14}} \put(28,0){\line(1,2){7}} \put(14,28){\line(1,2){7}} \put(14,0){\line( \minus{} 1,2){7}} \put(28,0){\line( \minus{} 1,2){14}} \put(42,0){\line( \minus{} 1,2){21}} \put(0,0){\circle*{3}} \put(14,0){\circle*{3}} \put(28,0){\circle*{3}} \put(42,0){\circle*{3}} \put(7,14){\circle*{3}} \put(21,14){\circle*{3}} \put(35,14){\circle*{3}} \put(14,28){\circle*{3}} \put(28,28){\circle*{3}} \put(21,42){\circle*{3}}} \end{picture}\]

2017 Junior Balkan Team Selection Tests - Romania, 2

Determine the smallest positive integer $n$ such that, for any coloring of the elements of the set $\{2,3,...,n\}$ with two colors, the equation $x + y = z$ has a monochrome solution with $x \ne y$. (We say that the equation $x + y = z$ has a monochrome solution if there exist $a, b, c$ distinct, having the same color, such that $a + b = c$.)

2018 China Second Round Olympiad, 3

Let set $A=\{1,2,\ldots,n\} ,$ and $X,Y$ be two subsets (not necessarily distinct) of $A.$ Define that $\textup{max} X$ and $\textup{min} Y$ represent the greatest element of $X$ and the least element of $Y,$ respectively. Determine the number of two-tuples $(X,Y)$ which satisfies $\textup{max} X>\textup{min} Y.$

2015 BMT Spring, 1

Alice is planning a trip from the Bay Area to one of $5$ possible destinations (each of which is serviced by only $1$ airport) and wants to book two flights, one to her destination and one returning. There are $3$ airports within the Bay Area from which she may leave and to which she may return. In how many ways may she plan her flight itinerary?

2020 Abels Math Contest (Norwegian MO) Final, 1b

A round table has room for n diners ( $n\ge 2$). There are napkins in three different colours. In how many ways can the napkins be placed, one for each seat, so that no two neighbours get napkins of the same colour?

2024/2025 TOURNAMENT OF TOWNS, P2

A squared ${20} \times {20}$ board is split into two-squared dominoes. Prove that some line contains the centers of at least ten of such dominoes. Alexandr Yuran

MMATHS Mathathon Rounds, 2016

[u]Round 5[/u] [b]p13.[/b] Let $\{a\} _{n\ge 1}$ be an arithmetic sequence, with $a_ 1 = 0$, such that for some positive integers $k$ and $x$ we have $a_{k+1} = {k \choose x}$, $a_{2k+1} ={k \choose {x+1}}$ , and $a_{3k+1} ={k \choose {x+2}}$. Let $\{b\}_{n\ge 1}$ be an arithmetic sequence of integers with $b_1 = 0$. Given that there is some integer $m$ such that $b_m ={k \choose x}$, what is the number of possible values of $b_2$? [b]p14.[/b] Let $A = arcsin \left( \frac14 \right)$ and $B = arcsin \left( \frac17 \right)$. Find $\sin(A + B) \sin(A - B)$. [b]p15.[/b] Let $\{f_i\}^{9}_{i=1}$ be a sequence of continuous functions such that $f_i : R \to Z$ is continuous (i.e. each $f_i$ maps from the real numbers to the integers). Also, for all $i$, $f_i(i) = 3^i$. Compute $\sum^{9}_{k=1} f_k \circ f_{k-1} \circ ... \circ f_1(3^{-k})$. [u]Round 6[/u] [b]p16.[/b] If $x$ and $y$ are integers for which $\frac{10x^3 + 10x^2y + xy^3 + y^4}{203}= 1134341$ and $x - y = 1$, then compute $x + y$. [b]p17.[/b] Let $T_n$ be the number of ways that n letters from the set $\{a, b, c, d\}$ can be arranged in a line (some letters may be repeated, and not every letter must be used) so that the letter a occurs an odd number of times. Compute the sum $T_5 + T_6$. [b]p18.[/b] McDonald plays a game with a standard deck of $52$ cards and a collection of chips numbered $1$ to $52$. He picks $1$ card from a fully shuffled deck and $1$ chip from a bucket, and his score is the product of the numbers on card and on the chip. In order to win, McDonald must obtain a score that is a positive multiple of $6$. If he wins, the game ends; if he loses, he eats a burger, replaces the card and chip, shuffles the deck, mixes the chips, and replays his turn. The probability that he wins on his third turn can be written in the form $\frac{x^2 \cdot y}{z^3}$ such that $x, y$, and $z$ are relatively prime positive integers. What is $x + y + z$? (NOTE: Use Ace as $1$, Jack as $11$, Queen as $12$, and King as $13$) [u]Round 7[/u] [b]p19.[/b] Let $f_n(x) = ln(1 + x^{2^n}+ x^{2^{n+1}}+ x^{3\cdot 2^n})$. Compute $\sum^{\infty}_{k=0} f_{2k} \left( \frac12 \right)$. [b]p20.[/b] $ABCD$ is a quadrilateral with $AB = 183$, $BC = 300$, $CD = 55$, $DA = 244$, and $BD = 305$. Find $AC$. [b]p21.[/b] Define $\overline{xyz(t + 1)} = 1000x + 100y + 10z + t + 1$ as the decimal representation of a four digit integer. You are given that $3^x5^y7^z2^t = \overline{xyz(t + 1)}$ where $x, y, z$, and t are non-negative integers such that $t$ is odd and $0 \le x, y, z,(t + 1) \le 9$. Compute$3^x5^y7^z$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2782822p24445934]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Bangladesh Mathematical Olympiad, P4

$2023$ balls are divided into several buckets such that no bucket contains more than $99$ balls. We can remove balls from any bucket or remove an entire bucket, as many times as we want. Prove that we can remove them in such a way that each of the remaining buckets will have an equal number of balls and the total number of remaining balls will be at least $100$.

2017 Tuymaada Olympiad, 3

In a country every 2 cities are connected either by a direct bus route or a direct plane flight. A $clique$ is a set of cities such that every 2 cities in the set are connected by a direct flight. A $cluque$ is a set of cities such that every 2 cities in the set are connected by a direct flight, and every 2 cities in the set are connected to the same number of cities by a bus route. A $claque$ is a set of cities such that every 2 cities in the set are connected by a direct flight, and every 2 numbers of bus routes from a city in the set are different. Prove that the number of cities of any clique is at most the product of the biggest possible number of cities in a cluque and the the biggest possible number of cities in a claque. Tuymaada 2017 Q3 Juniors

2021 Regional Olympiad of Mexico Southeast, 4

Hernan wants to paint a $8\times 8$ board such that every square is painted with blue or red. Also wants to every $3\times 3$ subsquare have exactly $a$ blue squares and every $2\times 4$ or $4\times 2$ rectangle have exactly $b$ blue squares. Find all couples $(a,b)$ such that Hernan can do the required.

2017 BMT Spring, 8

In a $1024$ person randomly seeded single elimination tournament bracket, each player has a unique skill rating. In any given match, the player with the higher rating has a $\frac34$ chance of winning the match. What is the probability the second lowest rated player wins the tournament?

2010 Tournament Of Towns, 4

A rectangle is divided into $2\times 1$ and $1\times 2$ dominoes. In each domino, a diagonal is drawn, and no two diagonals have common endpoints. Prove that exactly two corners of the rectangle are endpoints of these diagonals.

MMPC Part II 1958 - 95, 1972

[b]p1.[/b] In a given tetrahedron the sum of the measures of the three face angles at each of the vertices is $180$ degrees. Prove that all faces of the tetrahedron are congruent triangles. [img]https://cdn.artofproblemsolving.com/attachments/c/c/40f03324fd19f6a5e0a5e541153a2b38faac79.png[/img] [b]p2.[/b] The digital sum $D(n)$ of a positive integer $n$ is defined recursively by: $D(n) = n$ if $1 \le n \le 9$ $D(n) = D(a_0 + a_1 + ... + a_m)$ if $n>9$ where $a_0 , a_1 ,..,a_m$ are all the digits of $n$ expressed in base ten. (For example, $D(959) = D(26) = D(8) = 8$.) Prove that $D(n \times 1234)= D(n)$ fcr all positive integers $n$ . [b]p3.[/b] A right triangle has area $A$ and perimeter $P$ . Find the largest possible value for the positive constant $k$ such that for every such triangle, $P^2 \ge kA$ . [b]p4.[/b] In the accompanying diagram, $\overline{AB}$ is tangent at $A$ to a circle of radius $1$ centered at $O$ . The segment $\overline{AP}$ is equal in length to the arc $AB$ . Let $C$ be the point of intersection of the lines $AO$ and $PB$ . Determine the length of segment $\overline{AC}$ in terms of $a$ , where $a$ is the measure of $\angle AOB$ in radians. [img]https://cdn.artofproblemsolving.com/attachments/e/0/596e269a89a896365b405af7bc6ca47a1f7c57.png[/img] [b]p5.[/b] Let $a_1 = a > 0$ and $a_2 = b >a$. Consider the sequence $\{a_1,a_2,a_3,...\}$ of positive numbers defined by: $a_3=\sqrt{a_1a_2}$, $a_4=\sqrt{a_2a_3}$, $...$ and in general, $a_n=\sqrt{a_{n-2}a_{n-1}}$, for $n\ge 3$ . Develop a formula $a_n$ expressing in terms of $a$, $b$ and $n$ , and determine $\lim_{n \to \infty} a_n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

ABMC Accuracy Rounds, 2021

[b]p1.[/b] There is a string of numbers $1234567891023...910134 ...91012...$ that concatenates the numbers $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, then $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, then $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, $2$, and so on. After $10$, $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, the string will be concatenated with $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$ again. What is the $2021$st digit? [b]p2.[/b] Bob really likes eating rice. Bob starts eating at the rate of $1$ bowl of rice per minute. Every minute, the number of bowls of rice Bob eats per minute increases by $1$. Given there are $78$ bowls of rice, find number of minutes Bob needs to finish all the rice. [b]p3.[/b] Suppose John has $4$ fair coins, one red, one blue, one yellow, one green. If John flips all $4$ coins at once, the probability he will land exactly $3$ heads and land heads on both the blue and red coins can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p4.[/b] Three of the sides of an isosceles trapezoid have lengths $1$, $10$, $20$ Find the sum of all possible values of the fourth side. [b]p5.[/b] An number two-three-delightful if and only if it can be expressed as the product of $2$ consecutive integers larger than $1$ and as the product of $3$ consecutive integers larger than $1$. What is the smallest two-three-delightful number? [b]p6.[/b] There are $3$ students total in Justin's online chemistry class. On a $100$ point test, Justin's two classmates scored $4$ and $7$ points. The teacher notices that the class median score is equal to $gcd(x, 42)$, where the positive integer $x$ is Justin's score. Find the sum of all possible values of Justin's score. [b]p7.[/b] Eddie's gym class of $10$ students decides to play ping pong. However, there are only $4$ tables and only $2$ people can play at a table. If $8$ students are randomly selected to play and randomly assigned a partner to play against at a table, the probability that Eddie plays against Allen is $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p8.[/b] Let $S$ be the set of integers $k$ consisting of nonzero digits, such that $300 < k < 400$ and $k - 300$ is not divisible by $11$. For each $k$ in $S$, let $A(k)$ denote the set of integers in $S$ not equal to $k$ that can be formed by permuting the digits of $k$. Find the number of integers $k$ in $S$ such that $k$ is relatively prime to all elements of $A(k)$. [b]p9.[/b] In $\vartriangle ABC$, $AB = 6$ and $BC = 5$. Point $D$ is on side $AC$ such that $BD$ bisects angle $\angle ABC$. Let $E$ be the foot of the altitude from $D$ to $AB$. Given $BE = 4$, find $AC^2$. [b]p10.[/b] For each integer $1 \le n \le 10$, Abe writes the number $2^n + 1$ on a blackboard. Each minute, he takes two numbers $a$ and $b$, erases them, and writes $\frac{ab-1}{a+b-2}$ instead. After $9$ minutes, there is one number $C$ left on the board. The minimum possible value of $C$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$. [b]p11.[/b] Estimation (Tiebreaker) Let $A$ and $B$ be the proportions of contestants that correctly answered Questions $9$ and $10$ of this round, respectively. Estimate $\left \lfloor \dfrac{1}{(AB)^2} \right \rfloor$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 BAMO, 2

Consider a $7\times7$ chessboard that starts out with all the squares white. We start painting squares black, one at a time, according to the rule that after painting the first square, each newly painted square must be adjacent along a side to only the square just previously painted. The final figure painted will be a connected “snake” of squares. (a) Show that it is possible to paint $31$ squares. (b) Show that it is possible to paint $32$ squares. (c) Show that it is possible to paint $33$ squares.

2024 Harvard-MIT Mathematics Tournament, 4

Sally the snail sits on the $3 \times 24$ lattice of points $(i, j)$ for all $1 \le i \le 3$ and $1 \le j \le 24$. She wants to visit every point in the lattice exactly once. In a move, Sally can move to a point in the lattice exactly one unit away. Given that Sally starts at $(2, 1)$, compute the number of possible paths Sally can take.

Mid-Michigan MO, Grades 5-6, 2004

[b]p1.[/b] On the island of Nevermind some people are liars; they always lie. The remaining habitants of the island are truthlovers; they tell only the truth. Three habitants of the island, $A, B$, and $C$ met this morning. $A$ said: “All of us are liars”. $B$ said: “Only one of us is a truthlover”. Who of them is a liar and who of them is a truthlover? [b]p2.[/b] Pinocchio has $9$ pieces of paper. He is allowed to take a piece of paper and cut it in $5$ pieces or $7$ pieces which increases the number of his pieces. Then he can take again one of his pieces of paper and cut it in $5$ pieces or $7$ pieces. He can do this again and again as many times as he wishes. Can he get $2004$ pieces of paper? [b]p3.[/b] In Dragonland there are coins of $1$ cent, $2$ cents, $10$ cents, $20$ cents, and $50$ cents. What is the largest amount of money one can have in coins, yet still not be able to make exactly $1$ dollar? [b]p4.[/b] Find all solutions $a, b, c, d, e$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccc} & a & b & c & d \\ + & a & c & a & c \\ \hline c & d & e & b & c \\ \end{tabular}$ [b]p5.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Princeton University Math Competition, A3 / B5

Two points are chosen uniformly at random on the sides of a square with side length 1. If $p$ is the probability that the distance between them is greater than $1$, what is $\lfloor 100p \rfloor$? (Note: $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.)