Found problems: 14842
2007 All-Russian Olympiad, 1
Faces of a cube $9\times 9\times 9$ are partitioned onto unit squares. The surface of a cube is pasted over by $243$ strips $2\times 1$ without overlapping. Prove that the number of bent strips is odd.
[i]A. Poliansky[/i]
2004 Germany Team Selection Test, 3
Let $n \geq 2$ be a natural number, and let $\left( a_{1};\;a_{2};\;...;\;a_{n}\right)$ be a permutation of $\left(1;\;2;\;...;\;n\right)$. For any integer $k$ with $1 \leq k \leq n$, we place $a_k$ raisins on the position $k$ of the real number axis. [The real number axis is the $x$-axis of a Cartesian coordinate system.]
Now, we place three children A, B, C on the positions $x_A$, $x_B$, $x_C$, each of the numbers $x_A$, $x_B$, $x_C$ being an element of $\left\{1;\;2;\;...;\;n\right\}$. [It is not forbidden to place different children on the same place!]
For any $k$, the $a_k$ raisins placed on the position $k$ are equally handed out to those children whose positions are next to $k$. [So, if there is only one child lying next to $k$, then he gets the raisin. If there are two children lying next to $k$ (either both on the same position or symmetric with respect to $k$), then each of them gets one half of the raisin. Etc..]
After all raisins are distributed, a child is unhappy if he could have received more raisins than he actually has received if he had moved to another place (while the other children would rest on their places).
For which $n$ does there exist a configuration $\left( a_{1};\;a_{2};\;...;\;a_{n}\right)$ and numbers $x_A$, $x_B$, $x_C$, such that all three children are happy?
1991 Greece National Olympiad, 3
Prove that exists triangle that can be partitions in $2050$ congruent triangles.
1977 IMO Longlists, 15
Let $n$ be an integer greater than $1$. In the Cartesian coordinate system we consider all squares with integer vertices $(x,y)$ such that $1\le x,y\le n$. Denote by $p_k\ (k=0,1,2,\ldots )$ the number of pairs of points that are vertices of exactly $k$ such squares. Prove that $\sum_k(k-1)p_k=0$.
1982 Brazil National Olympiad, 4
Three numbered tiles are arranged in a tray as shown:
[img]https://cdn.artofproblemsolving.com/attachments/d/0/d449364f92b7fae971fd348a82bafd25aa8ea1.jpg[/img]
Show that we cannot interchange the $1$ and the $3$ by a sequence of moves where we slide a tile to the adjacent vacant space.
2021 IMO Shortlist, C1
Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$.
2015 Bosnia and Herzegovina Junior BMO TST, 4
Let $n$ be a positive integer and let $a_1$, $a_2$,..., $a_n$ be positive integers from set $\{1, 2,..., n\}$ such that every number from this set occurs exactly once. Is it possible that numbers $a_1$, $a_1 + a_2 ,..., a_1 + a_2 + ... + a_n$ all have different remainders upon division by $n$, if:
$a)$ $n=7$
$b)$ $n=8$
2018 Grand Duchy of Lithuania, 2
Ten distinct numbers are chosen at random from the set $\{1, 2, 3, ... , 37\}$. Show that one can select four distinct numbers out of those ten so that the sum of two of them is equal to the sum of the other two.
2016 India IMO Training Camp, 3
Let $n$ be a natural number. A sequence $x_1,x_2, \cdots ,x_{n^2}$ of $n^2$ numbers is called $n-\textit{good}$ if each $x_i$ is an element of the set $\{1,2,\cdots ,n\}$ and the ordered pairs $\left(x_i,x_{i+1}\right)$ are all different for $i=1,2,3,\cdots ,n^2$ (here we consider the subscripts modulo $n^2$). Two $n-$good sequences $x_1,x_2,\cdots ,x_{n^2}$ and $y_1,y_2,\cdots ,y_{n^2}$ are called $\textit{similar}$ if there exists an integer $k$ such that $y_i=x_{i+k}$ for all $i=1,2,\cdots,n^2$ (again taking subscripts modulo $n^2$). Suppose that there exists a non-trivial permutation (i.e., a permutation which is different from the identity permutation) $\sigma$ of $\{1,2,\cdots ,n\}$ and an $n-$ good sequence $x_1,x_2,\cdots,x_{n^2}$ which is similar to $\sigma\left(x_1\right),\sigma\left(x_2\right),\cdots ,\sigma\left(x_{n^2}\right)$. Show that $n\equiv 2\pmod{4}$.
2022 Iran Team Selection Test, 1
Morteza Has $100$ sets. at each step Mahdi can choose two distinct sets of them and Morteza tells him the intersection and union of those two sets. Find the least steps that Mahdi can find all of the sets.
Proposed by Morteza Saghafian
2002 Tournament Of Towns, 1
All the species of plants existing in Russia are catalogued (numbered by integers from $2$ to $2000$ ; one after another, without omissions or repetitions). For any pair of species the gcd of their catalogue numbers was calculated and recorded but the catalogue numbers themselves were lost. Is it possible to restore the catalogue numbers from the data in hand?
2015 Bosnia Herzegovina Team Selection Test, 4
Let $X$ be a set which consists from $8$ consecutive positive integers. Set $X$ is divided on two disjoint subsets $A$ and $B$ with equal number of elements. If sum of squares of elements from set $A$ is equal to sum of squares of elements from set $B$, prove that sum of elements of set $A$ is equal to sum of elements of set $B$.
1996 China Team Selection Test, 3
Let $ M \equal{} \lbrace 2, 3, 4, \ldots\, 1000 \rbrace$. Find the smallest $ n \in \mathbb{N}$ such that any $ n$-element subset of $ M$ contains 3 pairwise disjoint 4-element subsets $ S, T, U$ such that
[b]I.[/b] For any 2 elements in $ S$, the larger number is a multiple of the smaller number. The same applies for $ T$ and $ U$.
[b]II.[/b] For any $ s \in S$ and $ t \in T$, $ (s,t) \equal{} 1$.
[b]III.[/b] For any $ s \in S$ and $ u \in U$, $ (s,u) > 1$.
1998 Estonia National Olympiad, 5
From an $n\times n$ square divided into $n^2$ unit squares, one corner unit square is cut off. Find all positive integers $n$ for which it is possible to tile the remaining part of the square with $L$-trominos.
[img]https://cdn.artofproblemsolving.com/attachments/0/4/d13e6e7016d943b867f44375a2205b10ccf552.png[/img]
2012 Tournament of Towns, 2
The cells of a $1\times 2n$ board are labelled $1,2,...,, n, -n,..., -2, -1$ from left to right. A marker is placed on an arbitrary cell. If the label of the cell is positive, the marker moves to the right a number of cells equal to the value of the label. If the label is negative, the marker moves to the left a number of cells equal to the absolute value of the label. Prove that if the marker can always visit all cells of the board, then $2n + 1$ is prime.
Brazil L2 Finals (OBM) - geometry, 2013.6
Consider a positive integer $n$ and two points $A$ and $B$ in a plane. Starting from point $A$, $n$ rays and starting from point $B$, $n$ rays are drawn so that all of them are on the same half-plane defined by the line $AB$ and that the angles formed by the $2n$ rays with the segment $AB$ are all acute. Define circles passing through points $A$, $B$ and each meeting point between the rays. What is the smallest number of [b]distinct [/b] circles that can be defined by this construction?
1996 French Mathematical Olympiad, Problem 5
Let $n$ be a positive integer. We say that a natural number $k$ has the property $C_n$ if there exist $2k$ distinct positive integers $a_1,b_1,\ldots,a_k,b_k$ such that the sums $a_1+b_1,\ldots,a_k+b_k$ are distinct and strictly smaller than $n$.
(a) Prove that if $k$ has the property $C_n$ then $k\le \frac{2n-3}{5}$.
(b) Prove that $5$ has the property $C_{14}$.
(c) If $(2n-3)/5$ is an integer, prove that it has the property $C_n$.
2025 India STEMS Category A, 4
Alice and Bob play a game on a connected graph with $2n$ vertices, where $n\in \mathbb{N}$ and $n>1$.. Alice and Bob have tokens named A and B respectively. They alternate their turns with Alice going first. Alice gets to decide the starting positions of A and B. Every move, the player with the turn moves their token to an adjacent vertex. Bob's goal is to catch Alice, and Alice's goal is to prevent this. Note that positions of A, B are visible to both Alice and Bob at every moment.
Provided they both play optimally, what is the maximum possible number of edges in the graph if Alice is able to evade Bob indefinitely?
[i]Proposed by Shashank Ingalagavi and Vighnesh Sangle[/i]
2013 CHMMC (Fall), 3
Bill plays a game in which he rolls two fair standard six-sided dice with sides labeled one through six. He wins if the number on one of the dice is three times the number on the other die. If Bill plays this game three times, compute the probability that he wins at least once.
2017 Balkan MO Shortlist, C2
Let $n,a,b,c$ be natural numbers. Every point on the coordinate plane with integer coordinates is colored in one of $n$ colors. Prove there exists $c$ triangles whose vertices are colored in the same color, which are pairwise congruent, and which have a side whose lenght is divisible by $a$ and a side whose lenght is divisible by $b$.
2000 Baltic Way, 8
Fourteen friends met at a party. One of them, Fredek, wanted to go to bed early. He said goodbye to 10 of his friends, forgot about the remaining 3, and went to bed. After a while he returned to the party, said goodbye to 10 of his friends (not necessarily the same as before), and went to bed. Later Fredek came back a number of times, each time saying goodbye to exactly 10 of his friends, and then went back to bed. As soon as he had said goodbye to each of his friends at least once, he did not come back again. In the morning Fredek realized that he had said goodbye a different number of times to each of his thirteen friends! What is the smallest possible number of times that Fredek returned to the party?
2023 Brazil Team Selection Test, 5
There are $n$ line segments on the plane, no three intersecting at a point, and each pair intersecting once in their respective interiors. Tony and his $2n - 1$ friends each stand at a distinct endpoint of a line segment. Tony wishes to send Christmas presents to each of his friends as follows:
First, he chooses an endpoint of each segment as a “sink”. Then he places the present at
the endpoint of the segment he is at. The present moves as follows :
$\bullet$ If it is on a line segment, it moves towards the sink.
$\bullet$ When it reaches an intersection of two segments, it changes the line segment it travels on and starts moving towards the new sink.
If the present reaches an endpoint, the friend on that endpoint can receive their present.
Prove that Tony can send presents to exactly $n$ of his $2n - 1$ friends.
2011 May Olympiad, 5
Determine for which natural numbers $n$ it is possible to completely cover a board of $ n \times n$, divided into $1 \times 1$ squares, with pieces like the one in the figure, without gaps or overlays and without leaving the board. Each of the pieces covers exactly six boxes.
Note: Parts can be rotated.
[img]https://cdn.artofproblemsolving.com/attachments/c/2/d87d234b7f9799da873bebec845c721e4567f9.png[/img]
1991 Greece National Olympiad, 4
In how many ways can we construct a square with dimensions $3\times 3$ using $3$ white, $3$ green and $3$ red squares of dimensions $1\times 1$, such that in every horizontal and in every certical line, squares have different colours .
2024 APMO, 4
Prove that for every positive integer $t$ there is a unique permutation $a_0, a_1, \ldots , a_{t-1}$ of $0, 1, \ldots , t-1$ such that, for every $0 \leq i \leq t-1$, the binomial coefficient $\binom{t+i}{2a_i}$ is odd and $2a_i \neq t+i$.