Found problems: 14842
2020 ABMC, 2020 Nov
[b]p1.[/b] A large square is cut into four smaller, congruent squares. If each of the smaller squares has perimeter $4$, what was the perimeter of the original square?
[b]p2.[/b] Pie loves to bake apples so much that he spends $24$ hours a day baking them. If Pie bakes a dozen apples in one day, how many minutes does it take Pie to bake one apple, on average?
[b]p3.[/b] Bames Jond is sent to spy on James Pond. One day, Bames sees James type in his $4$-digit phone password. Bames remembers that James used the digits $0$, $5$, and $9$, and no other digits, but he does not remember the order. How many possible phone passwords satisfy this condition?
[b]p4.[/b] What do you get if you square the answer to this question, add $256$ to it, and then divide by $32$?
[b]p5.[/b] Chloe the Horse and Flower the Chicken are best friends. When Chloe gets sad for any reason, she calls Flower, so Chloe must remember Flower's $3$ digit phone number, which can consist of any digits $0-5$. Given that the phone number's digits are unique and add to $5$, the number does not start with $0$, and the $3$ digit number is prime, what is the sum of all possible phone numbers?
[b]p6.[/b] Anuj has a circular pizza with diameter $A$ inches, which is cut into $B$ congruent slices, where $A$,$B$ are positive integers. If one of Anuj's pizza slices has a perimeter of $3\pi + 30$ inches, find $A + B$.
[b]p7.[/b] Bob really likes to study math. Unfortunately, he gets easily distracted by messages sent by friends. At the beginning of every minute, there is an $\frac{6}{10}$ chance that he will get a message from a friend. If Bob does get a message from a friend, there is a $\frac{9}{10}$ chance that he will look at the message, causing him to waste $30$ seconds before resuming his studying. If Bob doesn't get a message from a friend, there is a $\frac{3}{10}$ chance Bob will still check his messages hoping for a message from his friends, wasting $10$ seconds before he resumes his studying. What is the expected number of minutes in $100$ minutes for which Bob will be studying math?
[b]p8.[/b] Suppose there is a positive integer $n$ with $225$ distinct positive integer divisors. What is the minimum possible number of divisors of n that are perfect squares?
[b]p9.[/b] Let $a, b, c$ be positive integers. $a$ has $12$ divisors, $b$ has $8$ divisors, $c$ has $6$ divisors, and $lcm(a, b, c) = abc$. Let $d$ be the number of divisors of $a^2bc$. Find the sum of all possible values of $d$.
[b]p10.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 17$, $BC = 28$, $AC = 25$. Let the altitude from $A$ to $BC$ and the angle bisector of angle $B$ meet at $P$. Given the length of $BP$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime, find $a + b + c$.
[b]p11.[/b] Let $a$, $b$, and $c$ be the roots of the cubic equation $x^3-5x+3 = 0$. Let $S = a^4b+ab^4+a^4c+ac^4+b^4c+bc^4$. Find $|S|$.
[b]p12.[/b] Call a number palindromeish if changing a single digit of the number into a different digit results in a new six-digit palindrome. For example, the number $110012$ is a palindromeish number since you can change the last digit into a $1$, which results in the palindrome $110011$. Find the number of $6$ digit palindromeish numbers.
[b]p13.[/b] Let $P(x)$ be a polynomial of degree $3$ with real coecients and leading coecient $1$. Let the roots of $P(x)$ be $a$, $b$, $c$. Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}= 4$ and $a^2 + b^2 + c^2 = 36$, the coefficient of $x^2$ is negative, and $P(1) = 2$, let the $S$ be the sum of possible values of $P(0)$. Then $|S|$ can be expressed as $\frac{a + b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ such that $gcd(a, b, d) = 1$ and $c$ is not divisible by the square of any prime. Find $a + b + c + d$.
[b]p14.[/b] Let $ABC$ be a triangle with side lengths $AB = 7$, $BC = 8$, $AC = 9$. Draw a circle tangent to $AB$ at $B$ and passing through $C$. Let the center of the circle be $O$. The length of $AO$ can be expressed as $\frac{a\sqrt{b}}{c\sqrt{d}}$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, c) = gcd(b, d) = 1$ and $b$,$ d$ are not divisible by the square of any prime. Find $a + b + c + d$.
[b]p15.[/b] Many students in Mr. Noeth's BC Calculus class missed their first test, and to avoid taking a makeup, have decided to never leave their houses again. As a result, Mr. Noeth decides that he will have to visit their houses to deliver the makeup tests. Conveniently, the $17$ absent students in his class live in consecutive houses on the same street. Mr. Noeth chooses at least three of every four people in consecutive houses to take a makeup. How many ways can Mr. Noeth select students to take makeups?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 MOP Homework, 2
Determine the number of subset $S$ of the set $T = {1, 2,..., 2005}$
such that the sum of elements in $s$ is congruent to 2006 modulo
2048.
2018 Brazil National Olympiad, 5
One writes, initially, the numbers $1,2,3,\dots,10$ in a board. An operation is to delete the numbers $a, b$ and write the number $a+b+\frac{ab}{f(a,b)}$, where $f(a, b)$ is the sum of all numbers in the board excluding $a$ and $b$, one will make this until remain two numbers $x, y$ with $x\geq y$. Find the maximum value of $x$.
2000 Switzerland Team Selection Test, 10
At $n$ distinct points of a circular race course there are $n$ cars ready to start. Each car moves at a constant speed and covers the circle in an hour. On hearing the initial signal, each of them selects a direction and starts moving immediately. If two cars meet, both of them change directions and go on without loss of speed. Show that at a certain moment each car will be at its starting point.
2017 NZMOC Camp Selection Problems, 9
Let $k$ and $n$ be positive integers, with $k \le n$. A certain class has n students, and among any $k$ of them there is always one that is friends with the other $k- 1$. Find all values of $k$ and $n$ for which there must necessarily be a student who is friends with everyone else in the class.
2019 Harvard-MIT Mathematics Tournament, 5
Find all positive integers $n$ such that the unit segments of an $n \times n$ grid of unit squares can be partitioned into groups of three such that the segments of each group share a common vertex.
2019 Switzerland Team Selection Test, 8
Let $k,n,r$ be positive integers and $r<n$. Quirin owns $kn+r$ black and $kn+r$ white socks. He want to clean his cloths closet such there does not exist $2n$ consecutive socks $n$ of which black and the other $n$ white. Prove that
he can clean his closet in the desired manner if and only if $r\geq k$ and $n>k+r$.
2005 Italy TST, 1
A stage course is attended by $n \ge 4$ students. The day before the final exam, each group of three students conspire against another student to throw him/her out of the exam. Prove that there is a student against whom there are at least $\sqrt[3]{(n-1)(n- 2)} $conspirators.
1948 Moscow Mathematical Olympiad, 142
Find all possible arrangements of $4$ points on a plane, so that the distance between each pair of points is equal to either $a$ or $b$. For what ratios of $a : b$ are such arrangements possible?
1967 IMO Shortlist, 5
Let $n$ be a positive integer. Find the maximal number of non-congruent triangles whose sides lengths are integers $\leq n.$
2006 Junior Balkan Team Selection Tests - Moldova, 4
Let $n$ be a positive integer, $n\geq 4$. $n$ cards are arranged on a circle and the numbers $1$ or $-1$ are written on each of the cards. in a $question$ we may find out the product of the numbers on any $3$ cards. What is the minimum numbers if questions needed to find out the product of all $n$ numbers?
2003 Germany Team Selection Test, 3
For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?
2023 Malaysia IMONST 2, 5
Ruby writes the numbers $1, 2, 3, . . . , 10$ on the whiteboard. In each move, she selects two distinct numbers, $a$ and $b$, erases them, and replaces them with $a+b-1$. She repeats this process until only one number, $x$, remains. What are all the possible values of $x$?
2018 Ukraine Team Selection Test, 3
Consider the set of all integer points in $Z^3$. Sasha and Masha play such a game. At first, Masha marks an arbitrary point. After that, Sasha marks all the points on some a plane perpendicular to one of the coordinate axes and at no point, which Masha noted. Next, they continue to take turns (Masha can't to select previously marked points, Sasha cannot choose the planes on which there are points said Masha). Masha wants to mark $n$ consecutive points on some line that parallel to one of the coordinate axes, and Sasha seeks to interfere with it. Find all $n$, in which Masha can achieve the desired result.
MBMT Guts Rounds, 2019
[hide=D stands for Descartes, L stands for Leibniz]they had two problem sets under those two names[/hide]
[b]L.10[/b] Given the following system of equations where $x, y, z$ are nonzero, find $x^2 + y^2 + z^2$.
$$x + 2y = xy$$
$$3y + z = yz$$
$$3x + 2z = xz$$
[u]Set 4[/u]
[b]L.16 / D.23[/b] Anson, Billiam, and Connor are looking at a $3D$ figure. The figure is made of unit cubes and is sitting on the ground. No cubes are floating; in other words, each unit cube must either have another unit cube or the ground directly under it. Anson looks from the left side and says, “I see a $5 \times 5$ square.” Billiam looks from the front and says the same thing. Connor looks from the top and says the same thing. Find the absolute difference between the minimum and maximum volume of the figure.
[b]L.17[/b] The repeating decimal $0.\overline{MBMT}$ is equal to $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers, and $M, B, T$ are distinct digits. Find the minimum value of $q$.
[b]L.18[/b] Annie, Bob, and Claire have a bag containing the numbers $1, 2, 3, . . . , 9$. Annie randomly chooses three numbers without replacement, then Bob chooses, then Claire gets the remaining three numbers. Find the probability that everyone is holding an arithmetic sequence. (Order does not matter, so $123$, $213$, and $321$ all count as arithmetic sequences.)
[b]L.19[/b] Consider a set $S$ of positive integers. Define the operation $f(S)$ to be the smallest integer $n > 1$ such that the base $2^k$ representation of $n$ consists only of ones and zeros for all $k \in S$. Find the size of the largest set $S$ such that $f(S) < 2^{2019}$.
[b]L.20 / D.25[/b] Find the largest solution to the equation $$2019(x^{2019x^{2019}-2019^2+2019})^{2019} = 2019^{x^{2019}+1}.$$
[u]Set 5[/u]
[b]L.21[/b] Steven is concerned about his artistic abilities. To make himself feel better, he creates a $100 \times 100$ square grid and randomly paints each square either white or black, each with probability $\frac12$. Then, he divides the white squares into connected components, groups of white squares that are connected to each other, possibly using corners. (For example, there are three connected components in the following diagram.) What is the expected number of connected components with 1 square, to the nearest integer?
[img]https://cdn.artofproblemsolving.com/attachments/e/d/c76e81cd44c3e1e818f6cf89877e56da2fc42f.png[/img]
[b]L.22[/b] Let x be chosen uniformly at random from $[0, 1]$. Let n be the smallest positive integer such that $3^n x$ is at most $\frac14$ away from an integer. What is the expected value of $n$?
[b]L.23[/b] Let $A$ and $B$ be two points in the plane with $AB = 1$. Let $\ell$ be a variable line through $A$. Let $\ell'$ be a line through $B$ perpendicular to $\ell$. Let X be on $\ell$ and $Y$ be on $\ell'$ with $AX = BY = 1$. Find the length of the locus of the midpoint of $XY$ .
[b]L.24[/b] Each of the numbers $a_i$, where $1 \le i \le n$, is either $-1$ or $1$. Also, $$a_1a_2a_3a_4+a_2a_3a_4a_5+...+a_{n-3}a_{n-2}a_{n-1}a_n+a_{n-2}a_{n-1}a_na_1+a_{n-1}a_na_1a_2+a_na_1a_2a_3 = 0.$$ Find the number of possible values for $n$ between $4$ and $100$, inclusive.
[b]L.25[/b] Let $S$ be the set of positive integers less than $3^{2019}$ that have only zeros and ones in their base $3$ representation. Find the sum of the squares of the elements of $S$. Express your answer in the form $a^b(c^d - 1)(e^f - 1)$, where $a, b, c, d, e, f$ are positive integers and $a, c, e$ are not perfect powers.
PS. You should use hide for answers. D.1-15 / L1-9 problems have been collected [url=https://artofproblemsolving.com/community/c3h2790795p24541357]here [/url] and D.16-30/ L10-15 [url=https://artofproblemsolving.com/community/c3h2790818p24541688]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
EMCC Team Rounds, 2014
[b]p1.[/b] What is the units digit of the product of the first seven primes?
[b]p2. [/b]In triangle $ABC$, $\angle BAC$ is a right angle and $\angle ACB$ measures $34$ degrees. Let $D$ be a point on segment $ BC$ for which $AC = CD$, and let the angle bisector of $\angle CBA$ intersect line $AD$ at $E$. What is the measure of $\angle BED$?
[b]p3.[/b] Chad numbers five paper cards on one side with each of the numbers from $ 1$ through $5$. The cards are then turned over and placed in a box. Jordan takes the five cards out in random order and again numbers them from $ 1$ through $5$ on the other side. When Chad returns to look at the cards, he deduces with great difficulty that the probability that exactly two of the cards have the same number on both sides is $p$. What is $p$?
[b]p4.[/b] Only one real value of $x$ satisfies the equation $kx^2 + (k + 5)x + 5 = 0$. What is the product of all possible values of $k$?
[b]p5.[/b] On the Exeter Space Station, where there is no effective gravity, Chad has a geometric model consisting of $125$ wood cubes measuring $ 1$ centimeter on each edge arranged in a $5$ by $5$ by $5$ cube. An aspiring carpenter, he practices his trade by drawing the projection of the model from three views: front, top, and side. Then, he removes some of the original $125$ cubes and redraws the three projections of the model. He observes that his three drawings after removing some cubes are identical to the initial three. What is the maximum number of cubes that he could have removed? (Keep in mind that the cubes could be suspended without support.)
[b]p6.[/b] Eric, Meena, and Cameron are studying the famous equation $E = mc^2$. To memorize this formula, they decide to play a game. Eric and Meena each randomly think of an integer between $1$ and $50$, inclusively, and substitute their numbers for $E$ and $m$ in the equation. Then, Cameron solves for the absolute value of $c$. What is the probability that Cameron’s result is a rational number?
[b]p7.[/b] Let $CDE$ be a triangle with side lengths $EC = 3$, $CD = 4$, and $DE = 5$. Suppose that points $ A$ and $B$ are on the perimeter of the triangle such that line $AB$ divides the triangle into two polygons of equal area and perimeter. What are all the possible values of the length of segment $AB$?
[b]p8.[/b] Chad and Jordan are raising bacteria as pets. They start out with one bacterium in a Petri dish. Every minute, each existing bacterium turns into $0, 1, 2$ or $3$ bacteria, with equal probability for each of the four outcomes. What is the probability that the colony of bacteria will eventually die out?
[b]p9.[/b] Let $a = w + x$, $b = w + y$, $c = x + y$, $d = w + z$, $e = x + z$, and $f = y + z$. Given that $af = be = cd$ and $$(x - y)(x - z)(x - w) + (y - x)(y - z)(y - w) + (z - x)(z - y)(z - w) + (w - x)(w - y)(w - z) = 1,$$ what is $$2(a^2 + b^2 + c^2 + d^2 + e^2 + f^2) - ab - ac - ad - ae - bc - bd - bf - ce - cf - de - df - ef ?$$
[b]p10.[/b] If $a$ and $b$ are integers at least $2$ for which $a^b - 1$ strictly divides $b^a - 1$, what is the minimum possible value of $ab$?
Note: If $x$ and $y$ are integers, we say that $x$ strictly divides $y$ if $x$ divides $y$ and $|x| \ne |y|$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024 Euler Olympiad, Round 1, 4
Find the number of ordered pairs $(a, b, c, d)$ of positive integers satisfying the equation:
\[a + 2b + 3c + 1000d = 2024.\]
[i]Proposed by Irakli Khutsishvili, Georgia [/i]
2005 Gheorghe Vranceanu, 1
Given a natural number $ n, $ prove that the set $ \{ -n+1,-n+2,\ldots ,-1,1,2,\ldots ,n-1,n\} $ can be partitioned into $ k $ subsets such that the sums of all elements of each of these subsets are equal, if and only if $ n $ is multiple of $ k. $
1985 AIME Problems, 14
In a tournament each player played exactly one game against each of the other players. In each game the winner was awarded 1 point, the loser got 0 points, and each of the two players earned 1/2 point if the game was a tie. After the completion of the tournament, it was found that exactly half of the points earned by each player were earned against the ten players with the least number of points. (In particular, each of the ten lowest scoring players earned half of her/his points against the other nine of the ten). What was the total number of players in the tournament?
Russian TST 2019, P2
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$.
Prove that Sisyphus cannot reach the aim in less than
\[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]
turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
2021 BmMT, Ind. Round
[b]p1.[/b] What is the largest number of five dollar footlongs Jimmy can buy with 88 dollars?
[b]p2.[/b] Austin, Derwin, and Sylvia are deciding on roles for BMT $2021$. There must be a single Tournament Director and a single Head Problem Writer, but one person cannot take on both roles. In how many ways can the roles be assigned to Austin, Derwin, and Sylvia?
[b]p3.[/b] Sofia has$ 7$ unique shirts. How many ways can she place $2$ shirts into a suitcase, where the order in which Sofia places the shirts into the suitcase does not matter?
[b]p4.[/b] Compute the sum of the prime factors of $2021$.
[b]p5.[/b] A sphere has volume $36\pi$ cubic feet. If its radius increases by $100\%$, then its volume increases by $a\pi$ cubic feet. Compute $a$.
[b]p6.[/b] The full price of a movie ticket is $\$10$, but a matinee ticket to the same movie costs only $70\%$ of the full price. If $30\%$ of the tickets sold for the movie are matinee tickets, and the total revenue from movie tickets is $\$1001$, compute the total number of tickets sold.
[b]p7.[/b] Anisa rolls a fair six-sided die twice. The probability that the value Anisa rolls the second time is greater than or equal to the value Anisa rolls the first time can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[b]p8.[/b] Square $ABCD$ has side length $AB = 6$. Let point $E$ be the midpoint of $\overline{BC}$. Line segments $\overline{AC}$ and $\overline{DE}$ intersect at point $F$. Compute the area of quadrilateral ABEF.
[b]p9.[/b] Justine has a large bag of candy. She splits the candy equally between herself and her $4$ friends, but she needs to discard three candies before dividing so that everyone gets an equal number of candies. Justine then splits her share of the candy between herself and her two siblings, but she needs to discard one candy before dividing so that she and her siblings get an equal number of candies. If Justine had instead split all of the candy that was originally in the large bag between herself and $14$ of her classmates, what is the fewest number of candies that she would need to discard before dividing so that Justine and her $14$ classmates get an equal number of candies?
[b]p10.[/b] For some positive integers $a$ and $b$, $a^2 - b^2 = 400$. If $a$ is even, compute $a$.
[b]p11.[/b] Let $ABCDEFGHIJKL$ be the equilateral dodecagon shown below, and each angle is either $90^o$ or $270^o$. Let $M$ be the midpoint of $\overline{CD}$, and suppose $\overline{HM}$ splits the dodecagon into two regions. The ratio of the area of the larger region to the area of the smaller region can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[img]https://cdn.artofproblemsolving.com/attachments/3/e/387bcdf2a6c39fcada4f21f24ceebd18a7f887.png[/img]
[b]p12.[/b] Nelson, who never studies for tests, takes several tests in his math class. Each test has a passing score of $60/100$. Since Nelson's test average is at least $60/100$, he manages to pass the class. If only nonnegative integer scores are attainable on each test, and Nelson gets a dierent score on every test, compute the largest possible ratio of tests failed to tests passed. Assume that for each test, Nelson either passes it or fails it, and the maximum possible score for each test is 100.
[b]p13.[/b] For each positive integer $n$, let $f(n) = \frac{n}{n+1} + \frac{n+1}{n}$ . Then $f(1)+f(2)+f(3)+...+f(10)$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[b]p14.[/b] Triangle $\vartriangle ABC$ has point $D$ lying on line segment $\overline{BC}$ between $B$ and $C$ such that triangle $\vartriangle ABD$ is equilateral. If the area of triangle $\vartriangle ADC$ is $\frac14$ the area of triangle $\vartriangle ABC$, then $\left( \frac{AC}{AB}\right)^2$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[b]p15.[/b] In hexagon $ABCDEF$, $AB = 60$, $AF = 40$, $EF = 20$, $DE = 20$, and each pair of adjacent edges are perpendicular to each other, as shown in the below diagram. The probability that a random point inside hexagon $ABCDEF$ is at least $20\sqrt2$ units away from point $D$ can be expressed in the form $\frac{a-b\pi}{c}$ , where $a$, $b$, $c$ are positive integers such that gcd$(a, b, c) = 1$. Compute $a + b + c$.
[img]https://cdn.artofproblemsolving.com/attachments/3/c/1b45470265d10a73de7b83eff1d3e3087d6456.png[/img]
[b]p16.[/b] The equation $\sqrt{x} +\sqrt{20-x} =\sqrt{20 + 20x - x^2}$ has $4$ distinct real solutions, $x_1$, $x_2$, $x_3$, and $x_4$. Compute $x_1 + x_2 + x_3 + x_4$.
[b]p17.[/b] How many distinct words with letters chosen from $B, M, T$ have exactly $12$ distinct permutations, given that the words can be of any length, and not all the letters need to be used? For example, the word $BMMT$ has $12$ permutations. Two words are still distinct even if one is a permutation of the other. For example, $BMMT$ is distinct from $TMMB$.
[b]p18.[/b] We call a positive integer binary-okay if at least half of the digits in its binary (base $2$) representation are $1$'s, but no two $1$s are consecutive. For example, $10_{10} = 1010_2$ and $5_{10} = 101_2$ are both binary-okay, but $16_{10} = 10000_2$ and $11_{10} = 1011_2$ are not. Compute the number of binary-okay positive integers less than or equal to $2020$ (in base $10$).
[b]p19.[/b] A regular octahedron (a polyhedron with $8$ equilateral triangles) has side length $2$. An ant starts on the center of one face, and walks on the surface of the octahedron to the center of the opposite face in as short a path as possible. The square of the distance the ant travels can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[img]https://cdn.artofproblemsolving.com/attachments/f/8/3aa6abe02e813095e6991f63fbcf22f2e0431a.png[/img]
[b]p20.[/b] The sum of $\frac{1}{a}$ over all positive factors $a$ of the number $360$ can be expressed in the form $\frac{m}{n}$ ,where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Tuymaada Olympiad, 3
Prove that $N^2$ arbitrary distinct positive integers ($N>10$) can be arranged in a $N\times N$ table, so that all $2N$ sums in rows and columns are distinct.
[i]Proposed by S. Volchenkov[/i]
2025 Kosovo National Mathematical Olympiad`, P3
A number is said to be [i]regular[/i] if when a digit $k$ appears in that number, the digit appears exactly $k$ times. For example, the number $3133$ is a regular number because the digit $1$ appears exactly once and the digit $3$ appears exactly three times. How many regular six-digit numbers are there?
2025 NCJMO, 2
A collection of $n$ positive numbers, where repeats are allowed, adds to $500$. They can be split into $20$ groups each adding to $25$, and can also be split into $25$ groups each adding to $20$. (A group is allowed to contain any amount of integers, even just one integer.) What is the least possible value of $n$?
[i]Aaron Wang[/i]
DMM Individual Rounds, 1998
[b]p1.[/b] Find the greatest integer $n$ such that $n \log_{10} 4$ does not exceed $\log_{10} 1998$.
[b]p2.[/b] Rectangle $ABCD$ has sides $AB = CD = 12/5$, $BC = DA = 5$. Point $P$ is on $AD$ with $\angle BPC = 90^o$. Compute $BP + PC$.
[b]p3.[/b] Compute the number of sequences of four decimal digits $(a, b, c, d)$ (each between $0$ and $9$ inclusive) containing no adjacent repeated digits. (That is, each digit is distinct from the digits directly before and directly after it.)
[b]p4.[/b] Solve for $t$, $-\pi/4 \le t \le \pi/4 $:
$$\sin^3 t + \sin^2 t \cos t + \sin t \cos^2 t + \cos^3 t =\frac{\sqrt6}{2}$$
[b]p5.[/b] Find all integers $n$ such that $n - 3$ divides $n^2 + 2$.
[b]p6.[/b] Find the maximum number of bishops that can occupy an $8 \times 8$ chessboard so that no two of the bishops attack each other. (Bishops can attack an arbitrary number of squares in any diagonal direction.)
[b]p7.[/b] Points $A, B, C$, and $D$ are on a Cartesian coordinate system with $A = (0, 1)$, $B = (1, 1)$, $C = (1,-1)$, and $D = (-1, 0)$. Compute the minimum possible value of $PA + PB + PC + PD$ over all points $P$.
[b]p8.[/b] Find the number of distinct real values of $x$ which satisfy
$$(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)+(1^2 \cdot 3^2\cdot 5^2\cdot 7^2\cdot 9^2)/2^{10} = 0.$$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].