This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 254

2021 Austrian MO National Competition, 5

Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie. (a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it. (b) Show that in all other cases the four points thus obtained lie on one circle. (Theresia Eisenkölbl)

1954 Polish MO Finals, 1

Prove that in an isosceles trapezoid circumscibed around a circle, the segments connecting the points of tangency of opposite sides with the circle pass through the point of intersection of the diagonals.

1992 Swedish Mathematical Competition, 6

$(x_1, y_1), (x_2, y_2), (x_3, y_3)$ lie on a straight line and on the curve $y^2 = x^3$. Show that $\frac{x_1}{y_1} + \frac{x_2}{y_2}+\frac{x_3}{y_3} = 0$.

2018-IMOC, G2

Given $\vartriangle ABC$ with circumcircle $\Omega$. Assume $\omega_a, \omega_b, \omega_c$ are circles which tangent internally to $\Omega$ at $T_a,T_b, T_c $ and tangent to $BC,CA,AB$ at $P_a, P_b, P_c$, respectively. If $AT_a,BT_b,CT_c$ are collinear, prove that $AP_a,BP_b,CP_c$ are collinear.

2020 Durer Math Competition Finals, 4

Let $ABC$ be a scalene triangle and its incentre $I$. Denote by $F_A$ the intersection of the line $BC$ and the perpendicular to the angle bisector at $A$ through $I$. Let us define points $F_B$ and $F_C$ in a similar manner. Prove that points $F_A, F_B$ and $F_C$ are collinear.

III Soros Olympiad 1996 - 97 (Russia), 9.6

Let $ABC$ be an isosceles right triangle with hypotenuse $AB$, $D$ be some point in the plane such that $2CD = AB$ and point $C$ inside the triangle $ABD$. We construct two rays with a start in $C$, intersecting $AD$ and $BD$ and perpendicular to them. On the first one, intersecting $AD$, we will plot the segment $CK = AD$, and on the second one - $CM = BD$. Prove that points $M$, $D$ and $K$ lie on the same line.

2022 JBMO Shortlist, G6

Let $ABC$ be a right triangle with hypotenuse $BC$. The tangent to the circumcircle of triangle $ABC$ at $A$ intersects the line $BC$ at $T$. The points $D$ and $E$ are chosen so that $AD = BD, AE = CE,$ and $\angle CBD = \angle BCE < 90^{\circ}$. Prove that $D, E,$ and $T$ are collinear. Proposed by [i]Nikola Velov, Macedonia[/i]

2017 Thailand TSTST, 5

Let $\omega_1, \omega_2$ be two circles with different radii, and let $H$ be the exsimilicenter of the two circles. A point X outside both circles is given. The tangents from $X$ to $\omega_1$ touch $\omega_1$ at $P, Q$, and the tangents from $X$ to $\omega_2$ touch $\omega_2$ at $R, S$. If $PR$ passes through $H$ and is not a common tangent line of $\omega_1, \omega_2$, prove that $QS$ also passes through $H$.

1997 All-Russian Olympiad Regional Round, 10.2

Circles $S_1$ and $S_2$ intersect at points $M$ and $N$. Prove that if vertices $A$ and $ C$ of some rectangle $ABCD$ lie on the circle $S_1$, and the vertices $B$ and $D$ lie on the circle $S_2$, then the point of intersection of its diagonals lies on the line $MN$.

2015 Indonesia MO Shortlist, G2

Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.

Indonesia MO Shortlist - geometry, g1

Given triangle $ABC$, $AL$ bisects angle $\angle BAC$ with $L$ on side $BC$. Lines $LR$ and $LS$ are parallel to $BA$ and $CA$ respectively, $R$ on side $AC$ and$ S$ on side $AB$, respectively. Through point $B$ draw a perpendicular on $AL$, intersecting $LR$ at $M$. If point $D$ is the midpoint of $BC$, prove that that the three points $A, M, D$ lie on a straight line.

2012 Ukraine Team Selection Test, 9

The inscribed circle $\omega$ of the triangle $ABC$ touches its sides $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$, respectively. Let $S$ be the intersection point of lines passing through points $B$ and $C$ and parallel to $A_1C_1$ and $A_1B_1$ respectively, $A_0$ be the foot of the perpendicular drawn from point $A_1$ on $B_1C_1$, $G_1$ be the centroid of triangle $A_1B_1C_1$, $P$ be the intersection point of the ray $G_1A_0$ with $\omega$. Prove that points $S, A_1$, and $P$ lie on a straight line.

2016 NZMOC Camp Selection Problems, 6

Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $P \ne E$ be the point of tangency of the circle with radius $HE$ centred at $H$ with its tangent line going through point $C$, and let $Q \ne E$ be the point of tangency of the circle with radius $BE$ centred at $B$ with its tangent line going through $C$. Prove that the points $D, P$ and $Q$ are collinear.

2016 Bosnia And Herzegovina - Regional Olympiad, 3

Let $AB$ be a diameter of semicircle $h$. On this semicircle there is point $C$, distinct from points $A$ and $B$. Foot of perpendicular from point $C$ to side $AB$ is point $D$. Circle $k$ is outside the triangle $ADC$ and at the same time touches semicircle $h$ and sides $AB$ and $CD$. Touching point of $k$ with side $AB$ is point $E$, with semicircle $h$ is point $T$ and with side $CD$ is point $S$ $a)$ Prove that points $A$, $S$ and $T$ are collinear $b)$ Prove that $AC=AE$

2018 Federal Competition For Advanced Students, P1, 2

Let $ABC$ be a triangle with incenter $I$. The incircle of the triangle is tangent to the sides $BC$ and $AC$ in points $D$ and $E$, respectively. Let $P$ denote the common point of lines $AI$ and $DE$, and let $M$ and $N$ denote the midpoints of sides $BC$ and $AB$, respectively. Prove that points $M, N$ and $P$ are collinear. [i](Proposed by Karl Czakler)[/i]

Kyiv City MO Juniors Round2 2010+ geometry, 2015.9.4

Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers ${{O} _ {1}}$ and ${{O} _ {2}}$ intersect at points $A$ and $B$, respectively. The line ${{O} _ {1}} {{O} _ {2}}$ intersects ${{w} _ {1}}$ at the point $Q$, which does not lie inside the circle ${{w} _ {2}}$, and ${{w} _ {2}}$ at the point $X$ lying inside the circle ${{w} _ {1} }$. Around the triangle ${{O} _ {1}} AX$ circumscribe a circle ${{w} _ {3}}$ intersecting the circle ${{w} _ {1}}$ for the second time in point $T$. The line $QT$ intersects the circle ${{w} _ {3}}$ at the point $K$, and the line $QB$ intersects ${{w} _ {2}}$ the second time at the point $H$. Prove that a) points $T, \, \, X, \, \, B$ lie on one line; b) points $K, \, \, X, \, \, H$ lie on one line. (Vadym Mitrofanov)

2024 Junior Balkan MO, 2

Let $ABC$ be a triangle such that $AB < AC$. Let the excircle opposite to A be tangent to the lines $AB, AC$, and $BC$ at points $D, E$, and $F$, respectively, and let $J$ be its centre. Let $P$ be a point on the side $BC$. The circumcircles of the triangles $BDP$ and $CEP$ intersect for the second time at $Q$. Let $R$ be the foot of the perpendicular from $A$ to the line $FJ$. Prove that the points $P, Q$, and $R$ are collinear. (The [i]excircle[/i] of a triangle $ABC$ opposite to $A$ is the circle that is tangent to the line segment $BC$, to the ray $AB$ beyond $B$, and to the ray $AC$ beyond $C$.) [i]Proposed by Bozhidar Dimitrov, Bulgaria[/i]

1997 Mexico National Olympiad, 2

In a triangle $ABC, P$ and $P'$ are points on side $BC, Q$ on side $CA$, and $R $ on side $AB$, such that $\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP'}{P'B}$ . Let $G$ be the centroid of triangle $ABC$ and $K$ be the intersection point of $AP'$ and $RQ$. Prove that points $P,G,K$ are collinear.

2020 Thailand TSTST, 5

Let $P$ be an interior point of a circle $\Gamma$ centered at $O$ where $P \ne O$. Let $A$ and $B$ be distinct points on $\Gamma$. Lines $AP$ and $BP$ meet $\Gamma$ again at $C$ and $D$, respectively. Let $S$ be any interior point on line segment $PC$. The circumcircle of $\vartriangle ABS$ intersects line segment $PD$ at $T$. The line through $S$ perpendicular to $AC$ intersects $\Gamma$ at $U$ and $V$ . The line through $T$ perpendicular to $BD$ intersects $\Gamma$ at $X$ and $Y$ . Let $M$ and $N$ be the midpoints of $UV$ and $XY$ , respectively. Let $AM$ and $BN$ meet at $Q$. Suppose that $AB$ is not parallel to $CD$. Show that $P, Q$, and $O$ are collinear if and only if $S$ is the midpoint of $PC$.

2013 IFYM, Sozopol, 1

Let point $T$ be on side $AB$ of $\Delta ABC$ be such that $AT-BT=AC-BC$. The perpendicular from point $T$ to $AB$ intersects $AC$ in point $E$ and the angle bisectors of $\angle B$ and $\angle C$ intersect the circumscribed circle $k$ of $ABC$ in points $M$ and $L$. If $P$ is the second intersection point of the line $ME$ with $k$, then prove that $P,T,L$ are collinear.

2015 Estonia Team Selection Test, 4

Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $C_1 (H,HE)$ and $C_2(B,BE)$ be two circles tangent at $AC$ at point $E$. Let $P\ne E$ be the second point of tangency of the circle $C_1 (H,HE)$ with its tangent line going through point $C$, and $Q\ne E$ be the second point of tangency of the circle $C_2(B,BE)$ with its tangent line going through point $C$. Prove that points $D, P$, and $Q$ are collinear.

1998 Estonia National Olympiad, 2

Let $C$ and $D$ be two distinct points on a semicircle of diameter $AB$. Let $E$ be the intersection of $AC$ and $BD$, $F$ be the intersection of $AD$ and $BC$ and $X, Y$, and $Z$ are the midpoints of $AB, CD$, and $EF$, respectively. Prove that the points $X, Y,$ and $Z$ are collinear.

1982 Czech and Slovak Olympiad III A, 1

Given a tetrahedron $ABCD$ and inside the tetrahedron points $K, L, M, N$ that do not lie on a plane. Denote also the centroids of $P$, $Q$, $R$, $S$ of the tetrahedrons $KBCD$, $ALCD$, $ABMD$, $ABCN$ do not lie on a plane. Let $T$ be the centroid of the tetrahedron ABCD, $T_o$ be the centroid of the tetrahedron $PQRS$ and $T_1$ be the centroid of the tetrahedron $KLMN$. a) Prove that the points $T, T_0, T_1$ lie in one straight line. b) Determine the ratio $|T_0T| : |T_0 T_1|$.

2022 Indonesia TST, G

Given an acute triangle $ABC$. with $H$ as its orthocenter, lines $\ell_1$ and $\ell_2$ go through $H$ and are perpendicular to each other. Line $\ell_1$ cuts $BC$ and the extension of $AB$ on $D$ and $Z$ respectively. Whereas line $\ell_2$ cuts $BC$ and the extension of $AC$ on $E$ and $X$ respectively. If the line through $D$ and parallel to $AC$ and the line through $E$ parallel to $AB$ intersects at $Y$, prove that $X,Y,Z$ are collinear.

2013 Sharygin Geometry Olympiad, 7

Two fixed circles $\omega_1$ and $\omega_2$ pass through point $O$. A circle of an arbitrary radius $R$ centered at $O$ meets $\omega_1$ at points $A$ and $B$, and meets $\omega_2$ at points $C$ and $D$. Let $X$ be the common point of lines $AC$ and $BD$. Prove that all the points X are collinear as $R$ changes.