This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2012 EGMO, 4

A set $A$ of integers is called [i]sum-full[/i] if $A \subseteq A + A$, i.e. each element $a \in A$ is the sum of some pair of (not necessarily different) elements $b,c \in A$. A set $A$ of integers is said to be [i]zero-sum-free[/i] if $0$ is the only integer that cannot be expressed as the sum of the elements of a finite nonempty subset of $A$. Does there exist a sum-full zero-sum-free set of integers? [i]Romania (Dan Schwarz)[/i]

2018 Costa Rica - Final Round, LRP1

Arnulfo and Berenice play the following game: One of the two starts by writing a number from $ 1$ to $30$, the other chooses a number from $ 1$ to $30$ and adds it to the initial number, the first player chooses a number from $ 1$ to $30$ and adds it to the previous result, they continue doing the same until someone manages to add $2018$. When Arnulfo was about to start, Berenice told him that it was unfair, because whoever started had a winning strategy, so the numbers had better change. So they asked the following question: Adding chosen numbers from $1 $ to $a$, until reaching the number $ b$, what conditions must meet $a$ and $ b$ so that the first player does not have a winning strategy? Indicate if Arnulfo and Berenice are right and answer the question asked by them.

2000 Portugal MO, 6

In a tournament, $n$ players participate. Each player plays each other exactly once, with no ties. A player $A$ is said to be [i]champion [/i] if, for every other player $B$, one of the following two situations occurs: (a) $A$ beat $B$; (b) $A$ beat a player $C$ who in turn beat $B$. Prove that in such a tournament there cannot be exactly two champions.

2025 NCMO, 1

A collection of $n$ positive numbers, where repeats are allowed, adds to $500$. They can be split into $20$ groups each adding to $25$, and can also be split into $25$ groups each adding to $20$. (A group is allowed to contain any amount of integers, even just one integer.) What is the least possible value of $n$? [i]Aaron Wang[/i]

2016 CMIMC, 9

1007 distinct potatoes are chosen independently and randomly from a box of 2016 potatoes numbered $1, 2, \dots, 2016$, with $p$ being the smallest chosen potato. Then, potatoes are drawn one at a time from the remaining 1009 until the first one with value $q < p$ is drawn. If no such $q$ exists, let $S = 1$. Otherwise, let $S = pq$. Then given that the expected value of $S$ can be expressed as simplified fraction $\tfrac{m}{n}$, find $m+n$.

2023 Malaysian Squad Selection Test, 1

Ivan has a $m \times n$ board, and he color some squares black, so that no three black squares form a L-triomino up to rotations and reflections. What is the maximal number of black squares that Ivan can color? [i]Proposed by Ivan Chan Kai Chin[/i]

2001 Tuymaada Olympiad, 4

Is it possible to colour all positive real numbers by 10 colours so that every two numbers with decimal representations differing in one place only are of different colours? (We suppose that there is no place in a decimal representations such that all digits starting from that place are 9's.) [i]Proposed by A. Golovanov[/i]

2025 Canada National Olympiad, 1

The $n$ players of a hockey team gather to select their team captain. Initially, they stand in a circle, and each person votes for the person on their left. The players will update their votes via a series of rounds. In one round, each player $a$ updates their vote, one at a time, according to the following procedure: At the time of the update, if $a$ is voting for $b,$ and $b$ is voting for $c,$ then $a$ updates their vote to $c.$ (Note that $a, b,$ and $c$ need not be distinct; if $b=c$ then $a$'s vote does not change for this update.) Every player updates their vote exactly once in each round, in an order determined by the players (possibly different across different rounds). They repeat this updating procedure for $n$ rounds. Prove that at this time, all $n$ players will unanimously vote for the same person.

1996 Brazil National Olympiad, 5

There are $n$ boys $B_1, B_2, ... , B_n$ and $n$ girls $G_1, G_2, ... , G_n$. Each boy ranks the girls in order of preference, and each girl ranks the boys in order of preference. Show that we can arrange the boys and girls into n pairs so that we cannot find a boy and a girl who prefer each other to their partners. For example if $(B_1, G_3)$ and $(B_4, G_7)$ are two of the pairs, then it must not be the case that $B_4$ prefers $G_3$ to $G_7$ and $G_3$ prefers $B_4$ to $B_1$.

1998 All-Russian Olympiad, 3

A set $\mathcal S$ of translates of an equilateral triangle is given in the plane, and any two have nonempty intersection. Prove that there exist three points such that every triangle in $\mathcal S$ contains one of these points.

1968 All Soviet Union Mathematical Olympiad, 108

Each of the $9$ referees on the figure skating championship estimates the program of $20$ sportsmen by assigning him a place (from $1$ to $20$). The winner is determined by adding those numbers. (The less is the sum - the higher is the final place). It was found, that for the each sportsman, the difference of the places, received from the different referees was not greater than $3$. What can be the maximal sum for the winner?

2016 Saint Petersburg Mathematical Olympiad, 2

On a $300 \times 300$ board, several rooks are placed that beat the entire board. Within this case, each rook beats no more than one other rook. At what least $k$, it is possible to state that there is at least one rook in each $k\times k$ square ?

MOAA Gunga Bowls, 2022

[u]Set 4[/u] [b]G10.[/b] Let $ABCD$ be a square with side length $1$. It is folded along a line $\ell$ that divides the square into two pieces with equal area. The minimum possible area of the resulting shape is $A$. Find the integer closest to $100A$. [b]G11.[/b] The $10$-digit number $\underline{1A2B3C5D6E}$ is a multiple of $99$. Find $A + B + C + D + E$. [b]G12.[/b] Let $A, B, C, D$ be four points satisfying $AB = 10$ and $AC = BC = AD = BD = CD = 6$. If $V$ is the volume of tetrahedron $ABCD$, then find $V^2$. [u]Set 5[/u] [b]G13.[/b] Nate the giant is running a $5000$ meter long race. His first step is $4$ meters, his next step is $6$ meters, and in general, each step is $2$ meters longer than the previous one. Given that his $n$th step will get him across the finish line, find $n$. [b]G14.[/b] In square $ABCD$ with side length $2$, there exists a point $E$ such that $DA = DE$. Let line $BE$ intersect side $AD$ at $F$ such that $BE = EF$. The area of $ABE$ can be expressed in the form $a -\sqrt{b}$ where $a$ is a positive integer and $b$ is a square-free integer. Find $a + b$. [b]G15.[/b] Patrick the Beetle is located at $1$ on the number line. He then makes an infinite sequence of moves where each move is either moving $1$, $2$, or $3$ units to the right. The probability that he does reach $6$ at some point in his sequence of moves is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [u]Set 6[/u] [b]G16.[/b] Find the smallest positive integer $c$ greater than $1$ for which there do not exist integers $0 \le x, y \le9$ that satisfy $2x + 3y = c$. [b]G17.[/b] Jaeyong is on the point $(0, 0)$ on the coordinate plane. If Jaeyong is on point $(x, y)$, he can either walk to $(x + 2, y)$, $(x + 1, y + 1)$, or $(x, y + 2)$. Call a walk to $(x + 1, y + 1)$ an Brilliant walk. If Jaeyong cannot have two Brilliant walks in a row, how many ways can he walk to the point $(10, 10)$? [b]G18.[/b] Deja vu? Let $ABCD$ be a square with side length $1$. It is folded along a line $\ell$ that divides the square into two pieces with equal area. The maximum possible area of the resulting shape is $B$. Find the integer closest to $100B$. PS. You should use hide for answers. Sets 1-3 have been posted [url=https://artofproblemsolving.com/community/c3h3131303p28367061]here [/url] and 7-9 [url=https://artofproblemsolving.com/community/c3h3131308p28367095]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 VJIMC, Problem 3

Two players play the following game: Let $n$ be a fixed integer greater than $1$. Starting from number $k=2$, each player has two possible moves: either replace the number $k$ by $k+1$ or by $2k$. The player who is forced to write a number greater than $n$ loses the game. Which player has a winning strategy for which $n$?

2022 Kyiv City MO Round 2, Problem 4

Tags: combinatorics , gcd , game
Fedir and Mykhailo have three piles of stones: the first contains $100$ stones, the second $101$, the third $102$. They are playing a game, going in turns, Fedir makes the first move. In one move player can select any two piles of stones, let's say they have $a$ and $b$ stones left correspondently, and remove $gcd(a, b)$ stones from each of them. The player after whose move some pile becomes empty for the first time wins. Who has a winning strategy? As a reminder, $gcd(a, b)$ denotes the greatest common divisor of $a, b$. [i](Proposed by Oleksii Masalitin)[/i]

2008 Singapore MO Open, 5

consider a $2008 \times 2008$ chess board. let $M$ be the smallest no of rectangles that can be drawn on the chess board so that sides of every cell of the board is contained in the sides of one of the rectangles. find the value of $M$. (eg for $2\times 3$ chessboard, the value of $M$ is 3.)

EMCC Guts Rounds, 2024

[u]Round 1[/u] [b]p1.[/b] When Shiqiao sells a bale of kale, he makes $x$ dollars, where $$x =\frac{1 + 2 + 3 + 4 + 5 + 6 + 7 + 8}{3 + 4 + 5 + 6}.$$ Find $x$. [b]p2.[/b] The fraction of Shiqiao’s kale that has gone rotten is equal to $$\sqrt{ \frac{100^2}{99^2} -\frac{100}{99}}.$$ Find the fraction of Shiqiao’s kale that has gone rotten. [b]p3.[/b] Shiqiao is growing kale. Each day the number of kale plants doubles, but $4$ of his kale plants die afterwards. He starts with $6$ kale plants. Find the number of kale plants Shiqiao has after five days. [u]Round 2[/u] [b]p4.[/b] Today the high is $68$ degrees Fahrenheit. If $C$ is the temperature in Celsius, the temperature in Fahrenheit is equal to $1.8C + 32$. Find the high today in Celsius. [b]p5.[/b] The internal angles in Evan’s triangle are all at most $68$ degrees. Find the minimum number of degrees an angle of Evan’s triangle could measure. [b]p6.[/b] Evan’s room is at $68$ degrees Fahrenheit. His thermostat has two buttons, one to increase the temperature by one degree, and one to decrease the temperature by one degree. Find the number of combinations of $10$ button presses Evan can make so that the temperature of his room never drops below $67$ degrees or rises above $69$ degrees. [u]Round 3[/u] [b]p7.[/b] In a digital version of the SAT, there are four spaces provided for either a digit $(0-9)$, a fraction sign $(\/)$, or a decimal point $(.)$. The answer must be in simplest form and at most one space can be a non-digit character. Determine the largest fraction which, when expressed in its simplest form, fits within this space, but whose exact decimal representation does not. [b]p8.[/b] Rounding Rox picks a real number $x$. When she rounds x to the nearest hundred, its value increases by $2.71828$. If she had instead rounded $x$ to the nearest hundredth, its value would have decreased by $y$. Find $y$. [b]p9.[/b] Let $a$ and $b$ be real numbers satisfying the system of equations $$\begin{cases} a + \lfloor b \rfloor = 2.14 \\ \lfloor a \rfloor + b = 2.72 \end{cases}$$ Determine $a + b$. [u]Round 4[/u] [b]p10.[/b] Carol and Lily are playing a game with two unfair coins, both of which have a $1/4$ chance of landing on heads. They flip both coins. If they both land on heads, Lily loses the game, and if they both land on tails, Carol loses the game. If they land on different sides, Carol and Lily flip the coins again. They repeat this until someone loses the game. Find the probability that Lily loses the game. [b]p11.[/b] Dongchen is carving a circular coin design. He carves a regular pentagon of side length $1$ such that all five vertices of the pentagon are on the rim of the coin. He then carves a circle inside the pentagon so that the circle is tangent to all five sides of the pentagon. Find the area of the region between the smaller circle and the rim of the coin. [b]p12.[/b] Anthony flips a fair coin six times. Find the probability that at some point he flips $2$ heads in a row. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3248731p29808147]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 IMO, 2

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times. [i]Proposed by Geoffrey Smith, United Kingdom[/i]

1968 Leningrad Math Olympiad, grade 8

[b]8.1[/b] In the parallelogram $ABCD$ , the diagonal $AC$ is greater than the diagonal $BD$. The point $M$ on the diagonal $AC$ is such that around the quadrilateral $BCDM$ one can circumscribe a circle. Prove that $BD$ is the common tangent of the circles circumscribed around the triangles $ABM$ and $ADM$. [img]https://cdn.artofproblemsolving.com/attachments/b/3/9f77ff1f2198c201e5c270ec5b091a9da4d0bc.png[/img] [b]8.2 [/b] $A$ is an odd integer, $x$ and $y$ are roots of equation $t^2+At-1=0$. Prove that $x^4 + y^4$ and $x^5+ y^5$ are coprime integer numbers. [b]8.3[/b] A regular triangle is reflected symmetrically relative to one of its sides. The new triangle is again reflected symmetrically about one of its sides. This is repeated several times. It turned out that the resulting triangle coincides with the original one. Prove that an even number of reflections were made. [b]8.4 /7.6[/b] Several circles are arbitrarily placed in a circle of radius $3$, the sum of their radii is $25$. Prove that there is a straight line that intersects at least $9$ of these circles. [b]8.5 [/b] All two-digit numbers that do not end in zero are written one after another so that each subsequent number begins with that the same digit with which the previous number ends. Prove that you can do this and find the sum of the largest and smallest of all multi-digit numbers that can be obtained in this way. [url=https://artofproblemsolving.com/community/c6h3390996p32049528]8,6*[/url] (asterisk problems in separate posts) PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988084_1968_leningrad_math_olympiad]here[/url].

OIFMAT II 2012, 1

A circle is divided into $ n $ equal parts. Marceline sets out to assign whole numbers from $ 1 $ to $ n $ to each of these pieces so that the distance between two consecutive numbers is always the same. The numbers $ 887 $, $ 217 $ and $ 1556 $ occupy consecutive positions. How many parts was the circumference divided into?

2004 Iran MO (3rd Round), 22

Suppose that $ \mathcal F$ is a family of subsets of $ X$. $ A,B$ are two subsets of $ X$ s.t. each element of $ \mathcal{F}$ has non-empty intersection with $ A, B$. We know that no subset of $ X$ with $ n \minus{} 1$ elements has this property. Prove that there is a representation $ A,B$ in the form $ A \equal{} \{a_1,\dots,a_n\}$ and $ B \equal{} \{b_1,\dots,b_n\}$, such that for each $ 1\leq i\leq n$, there is an element of $ \mathcal F$ containing both $ a_i, b_i$.

Mid-Michigan MO, Grades 7-9, 2012

[b]p1.[/b] We say that integers $a$ and $b$ are [i]friends [/i] if their product is a perfect square. Prove that if $a$ is a friend of $b$, then $a$ is a friend of $gcd (a, b)$. [b]p2.[/b] On the island of knights and liars, a traveler visited his friend, a knight, and saw him sitting at a round table with five guests. "I wonder how many knights are among you?" he asked. " Ask everyone a question and find out yourself" advised him one of the guests. "Okay. Tell me one: Who are your neighbors?" asked the traveler. This question was answered the same way by all the guests. "This information is not enough!" said the traveler. "But today is my birthday, do not forget it!" said one of the guests. "Yes, today is his birthday!" said his neighbor. Now the traveler was able to find out how many knights were at the table. Indeed, how many of them were there if [i]knights always tell the truth and liars always lie[/i]? [b]p3.[/b] A rope is folded in half, then in half again, then in half yet again. Then all the layers of the rope were cut in the same place. What is the length of the rope if you know that one of the pieces obtained has length of $9$ meters and another has length $4$ meters? [b]p4.[/b] The floor plan of the palace of the Shah is a square of dimensions $6 \times 6$, divided into rooms of dimensions $1 \times 1$. In the middle of each wall between rooms is a door. The Shah orders his architect to eliminate some of the walls so that all rooms have dimensions $2 \times 1$, no new doors are created, and a path between any two rooms has no more than $N$ doors. What is the smallest value of $N$ such that the order could be executed? [b]p5.[/b] There are $10$ consecutive positive integers written on a blackboard. One number is erased. The sum of remaining nine integers is $2011$. Which number was erased? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Tournament of Towns, 5

A spacecraft landed on an asteroid. It is known that the asteroid is either a ball or a cube. The rover started its route at the landing site and finished it at the point symmetric to the landing site with respect to the center of the asteroid. On its way, the rover transmitted its spatial coordinates to the spacecraft on the landing site so that the trajectory of the rover movement was known. Can it happen that this information is not suffcient to determine whether the asteroid is a ball or a cube?

2024 China Team Selection Test, 14

For a positive integer $n$ and a subset $S$ of $\{1, 2, \dots, n\}$, let $S$ be "$n$-good" if and only if for any $x$, $y\in S$ (allowed to be same), if $x+y\leq n$, then $x+y\in S$. Let $r_n$ be the smallest real number such that for any positive integer $m\leq n$, there is always a $m$-element "$n$-good" set, so that the sum of its elements is not more than $m\cdot r_n$. Prove that there exists a real number $\alpha$ such that for any positive integer $n$, $|r_n-\alpha n|\leq 2024.$

KoMaL A Problems 2017/2018, A. 722

The Hawking Space Agency operates $n-1$ space flights between the $n$ habitable planets of the Local Galaxy Cluster. Each flight has a fixed price which is the same in both directions, and we know that using these flights, we can travel from any habitable planet to any habitable planet. In the headquarters of the Agency, there is a clearly visible board on a wall, with a portrait, containing all the pairs of different habitable planets with the total price of the cheapest possible sequence of flights connecting them. Suppose that these prices are precisely $1,2, ... , \binom{n}{2}$ monetary units in some order. prove that $n$ or $n-2$ is a square number.