This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 71

1998 Bundeswettbewerb Mathematik, 2

Prove that there exists an infinite sequence of perfect squares with the following properties: (i) The arithmetic mean of any two consecutive terms is a perfect square, (ii) Every two consecutive terms are coprime, (iii) The sequence is strictly increasing.

2011 Regional Olympiad of Mexico Center Zone, 3

We have $n$ positive integers greater than $1$ and less than $10000$ such that neither of them is prime but any two of them are relative prime. Find the maximum value of $n $.

2017 Irish Math Olympiad, 1

Does there exist an even positive integer $n$ for which $n+1$ is divisible by $5$ and the two numbers $2^n + n$ and $2^n -1$ are co-prime?

2010 Estonia Team Selection Test, 1

For arbitrary positive integers $a, b$, denote $a @ b =\frac{a-b}{gcd(a,b)}$ Let $n$ be a positive integer. Prove that the following conditions are equivalent: (i) $gcd(n, n @ m) = 1$ for every positive integer $m < n$, (ii) $n = p^k$ where $p$ is a prime number and $k$ is a non-negative integer.

2003 All-Russian Olympiad Regional Round, 10.7

Prove that from an arbitrary set of three-digit numbers, including at least four numbers that are mutually prime, you can choose four numbers that are also mutually prime

2016 Saudi Arabia Pre-TST, 1.4

Let $p$ be a given prime. For each prime $r$, we defind the function as following $F(r) =\frac{(p^{rp} - 1) (p - 1)}{(p^r - 1) (p^p - 1)}$. 1. Show that $F(r)$ is a positive integer for any prime $r \ne p$. 2. Show that $F(r)$ and $F(s)$ are coprime for any primes $r$ and $s$ such that $r \ne p, s \ne p$ and $r \ne s$. 3. Fix a prime $r \ne p$. Show that there is a prime divisor $q$ of $F(r)$ such that $p| q - 1$ but $p^2 \nmid q - 1$.

2004 All-Russian Olympiad Regional Round, 10.5

Equation $$x^n + a_1x^{n-1} + a_2x^{n-2} +...+ a_{n-1}x + a_n = 0$$ with integer non-zero coefficients $a_1$, $a_2$, $...$ , $a_n$ has $n$ different integer roots. Prove that if any two roots are relatively prime, then the numbers $a_{n-1}$ and $a_n$ are coprime.

2009 Bulgaria National Olympiad, 1

The natural numbers $a$ and $b$ satis fy the inequalities $a > b > 1$ . It is also known that the equation $\frac{a^x - 1}{a - 1}=\frac{b^y - 1}{b - 1}$ has at least two solutions in natural numbers, when $x > 1$ and $y > 1$. Prove that the numbers $a$ and $b$ are coprime (their greatest common divisor is $1$).

2009 Estonia Team Selection Test, 2

Call a finite set of positive integers [i]independent [/i] if its elements are pairwise coprime, and [i]nice [/i] if the arithmetic mean of the elements of every non-empty subset of it is an integer. a) Prove that for any positive integer $n$ there is an $n$-element set of positive integers which is both independent and nice. b) Is there an infinite set of positive integers whose every independent subset is nice and which has an $n$-element independent subset for every positive integer $n$?

2009 Estonia Team Selection Test, 2

Call a finite set of positive integers [i]independent [/i] if its elements are pairwise coprime, and [i]nice [/i] if the arithmetic mean of the elements of every non-empty subset of it is an integer. a) Prove that for any positive integer $n$ there is an $n$-element set of positive integers which is both independent and nice. b) Is there an infinite set of positive integers whose every independent subset is nice and which has an $n$-element independent subset for every positive integer $n$?

1940 Eotvos Mathematical Competition, 2

Let $m$ and $n$ be distinct positive integers. Prove that $2^{2^m} + 1$ and $2^{2^n} + 1$ have no common divisor greater than $1$.

1992 All Soviet Union Mathematical Olympiad, 567

Show that if $15$ numbers lie between $2$ and $1992$ and each pair is coprime, then at least one is prime.

2016 Bosnia and Herzegovina Team Selection Test, 4

Determine the largest positive integer $n$ which cannot be written as the sum of three numbers bigger than $1$ which are pairwise coprime.

2017 Singapore Junior Math Olympiad, 5

Let $a, b, c$ be nonzero integers, with $1$ as their only positive common divisor, such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}= 0$. Find the number of such triples $(a, b, c)$ with $50 \ge |a| \ge |b| \ge |c| 1$.

VMEO III 2006, 11.4

Given an integer $a>1$. Let $p_1 < p_2 <...< p_k$ be all prime divisors of $a$. For each positive integer $n$ we define: $C_0(n) = a^{2n}, C_1(n) =\frac{a^{2n}}{p^2_1}, .... , C_k(n) =\frac{a^{2_n}}{p^2_k}$ $A = a^2 + 1$ $T(n) = A^{C_0(n)} - 1$ $M(n) = LCM(a^{2n+2}, A^{C_1(n)} - 1, ..., A^{C_k(n)} - 1)$ $A_n =\frac{T(n)}{M(n)}$ Prove that the sequence $A_1, A_2, ... $ satisfies the properties: (i) Every number in the sequence is an integer greater than $1$ and has only prime divisors of the form $am + 1$. (ii) Any two different numbers in the sequence are coprime.

2011 Korea Junior Math Olympiad, 6

For a positive integer $n$, define the set $S_n$ as $S_n =\{(a, b)|a, b \in N, lcm[a, b] = n\}$ . Let $f(n)$ be the sum of $\phi (a)\phi (b)$ for all $(a, b) \in S_n$. If a prime $p$ relatively prime to $n$ is a divisor of $f(n)$, prove that there exists a prime $q|n$ such that $p|q^2 - 1$.

1963 Polish MO Finals, 1

Prove that two natural numbers whose digits are all ones are relatively prime if and only if the numbers of their digits are relatively prime.

2018 Dutch BxMO TST, 2

Let $\vartriangle ABC$ be a triangle of which the side lengths are positive integers which are pairwise coprime. The tangent in $A$ to the circumcircle intersects line $BC$ in $D$. Prove that $BD$ is not an integer.

2008 Korea Junior Math Olympiad, 3

For all positive integers $n$, prove that there are integers $x, y$ relatively prime to $5$ such that $x^2 + y^2 = 5^n$.

2016 Balkan MO Shortlist, N1

Find all natural numbers $n$ for which $1^{\phi (n)} + 2^{\phi (n)} +... + n^{\phi (n)}$ is coprime with $n$.

2015 Costa Rica - Final Round, N4

Show that there are no triples $(a, b, c)$ of positive integers such that a) $a + c, b + c, a + b$ do not have common multiples in pairs. b)$\frac{c^2}{a + b},\frac{b^2}{a + c},\frac{a^2}{c + b}$ are integer numbers.

2012 Singapore Junior Math Olympiad, 5

Suppose $S = \{a_1, a_2,..., a_{15}\}$ is a set of $1 5$ distinct positive integers chosen from $2 , 3, ... , 2012$ such that every two of them are coprime. Prove that $S$ contains a prime number. (Note: Two positive integers $m, n$ are coprime if their only common factor is 1)

2006 Korea Junior Math Olympiad, 5

Find all positive integers that can be written in the following way $\frac{m^2 + 20mn + n^2}{m^3 + n^3}$ Also, $m,n$ are relatively prime positive integers.

2012 Danube Mathematical Competition, 2

Consider the natural number prime $p, p> 5$. From the decimal number $\frac1p$, randomly remove $2012$ numbers, after the comma. Show that the remaining number can be represented as $\frac{a}{b}$ , where $a$ and $b$ are coprime numbers , and $b$ is multiple of $p$.

2017 Tuymaada Olympiad, 6

Let $\sigma(n)$ denote the sum of positive divisors of a number $n$. A positive integer $N=2^r b$ is given, where $r$ and $b$ are positive integers and $b$ is odd. It is known that $\sigma(N)=2N-1$. Prove that $b$ and $\sigma(b)$ are coprime. (J. Antalan, J. Dris)