This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 401

2022 Indonesia TST, C

Let $A$ be a subset of $\{1,2,\ldots,2020\}$ such that the difference of any two distinct elements in $A$ is not prime. Determine the maximum number of elements in set $A$.

2007 IMO Shortlist, 3

Find all positive integers $ n$ for which the numbers in the set $ S \equal{} \{1,2, \ldots,n \}$ can be colored red and blue, with the following condition being satisfied: The set $ S \times S \times S$ contains exactly $ 2007$ ordered triples $ \left(x, y, z\right)$ such that: [b](i)[/b] the numbers $ x$, $ y$, $ z$ are of the same color, and [b](ii)[/b] the number $ x \plus{} y \plus{} z$ is divisible by $ n$. [i]Author: Gerhard Wöginger, Netherlands[/i]

2007 Stanford Mathematics Tournament, 9

Let $d_n$ denote the number of derangements of the integers $1, 2, \ldots n$ so that no integer $i$ is in the $i^{th}$ position. It is possible to write a recurrence relation $d_{n}=f(n)d_{n-1}+g(n)d_{n-2}$; what is $f(n)+g(n)$?

2002 Olympic Revenge, 4

Find all pairs \((m,n)\) of positive integers such that there exists a polyhedron, with all faces being regular polygons, such that each vertex of the polyhedron is the vertex of exactly three faces, two of them having \(m\) sides, and the other having \(n\) sides.

2016 Greece National Olympiad, 4

A square $ABCD$ is divided into $n^2$ equal small (fundamental) squares by drawing lines parallel to its sides.The vertices of the fundamental squares are called vertices of the grid.A rhombus is called [i]nice[/i] when: $\bullet$ It is not a square $\bullet$ Its vertices are points of the grid $\bullet$ Its diagonals are parallel to the sides of the square $ABCD$ Find (as a function of $n$) the number of the [i]nice[/i] rhombuses ($n$ is a positive integer greater than $2$).

1992 IMO Longlists, 72

In a school six different courses are taught: mathematics, physics, biology, music, history, geography. The students were required to rank these courses according to their preferences, where equal preferences were allowed. It turned out that: [list] [*][b](i)[/b] mathematics was ranked among the most preferred courses by all students; [*][b](ii)[/b] no student ranked music among the least preferred ones; [*][b](iii) [/b]all students preferred history to geography and physics to biology; and [*][b](iv)[/b] no two rankings were the same. [/list] Find the greatest possible value for the number of students in this school.

2015 AIME Problems, 12

There are $2^{10}=1024$ possible 10-letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than 3 adjacent letters that are identical.

2004 Purple Comet Problems, 17

We want to paint some identically-sized cubes so that each face of each cube is painted a solid color and each cube is painted with six different colors. If we have seven different colors to choose from, how many distinguishable cubes can we produce?

1990 IMO Longlists, 37

An eccentric mathematician has a ladder with $ n$ rungs that he always ascends and descends in the following way: When he ascends, each step he takes covers $ a$ rungs of the ladder, and when he descends, each step he takes covers $ b$ rungs of the ladder, where $ a$ and $ b$ are fixed positive integers. By a sequence of ascending and descending steps he can climb from ground level to the top rung of the ladder and come back down to ground level again. Find, with proof, the minimum value of $ n,$ expressed in terms of $ a$ and $ b.$

2008 IMO, 5

Let $ n$ and $ k$ be positive integers with $ k \geq n$ and $ k \minus{} n$ an even number. Let $ 2n$ lamps labelled $ 1$, $ 2$, ..., $ 2n$ be given, each of which can be either [i]on[/i] or [i]off[/i]. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on). Let $ N$ be the number of such sequences consisting of $ k$ steps and resulting in the state where lamps $ 1$ through $ n$ are all on, and lamps $ n \plus{} 1$ through $ 2n$ are all off. Let $ M$ be number of such sequences consisting of $ k$ steps, resulting in the state where lamps $ 1$ through $ n$ are all on, and lamps $ n \plus{} 1$ through $ 2n$ are all off, but where none of the lamps $ n \plus{} 1$ through $ 2n$ is ever switched on. Determine $ \frac {N}{M}$. [i]Author: Bruno Le Floch and Ilia Smilga, France[/i]

1987 IMO Shortlist, 11

Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied: $(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity. $(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even . [i]Proposed by Poland.[/i]

1999 IMO Shortlist, 3

A game is played by $n$ girls ($n \geq 2$), everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, is an arbitrary order, exchange the balls they have at the moment. The game is called nice [b]nice[/b] if at the end nobody has her own ball and it is called [b]tiresome[/b] if at the end everybody has her initial ball. Determine the values of $n$ for which there exists a nice game and those for which there exists a tiresome game.

1968 IMO Shortlist, 25

Given $k$ parallel lines $l_1, \ldots, l_k$ and $n_i$ points on the line $l_i, i = 1, 2, \ldots, k$, find the maximum possible number of triangles with vertices at these points.

2020 AMC 12/AHSME, 15

Tags: counting
There are 10 people standing equally spaced around a circle. Each person knows exactly 3 of the other 9 people: the 2 people standing next to her or him, as well as the person directly across the circle. How many ways are there for the 10 people to split up into 5 pairs so that the members of each pair know each other? $\textbf{(A) } 11 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$

1979 Romania Team Selection Tests, 5.

In how many ways can we fill the cells of a $m\times n$ board with $+1$ and $-1$ such that the product of numbers on each line and on each column are all equal to $-1$?

1980 IMO Shortlist, 16

Prove that $\sum \frac{1}{i_1i_2 \ldots i_k} = n$ is taken over all non-empty subsets $\left\{i_1,i_2, \ldots, i_k\right\}$ of $\left\{1,2,\ldots,n\right\}$. (The $k$ is not fixed, so we are summing over all the $2^n-1$ possible nonempty subsets.)

2002 AMC 10, 3

Mary typed a six-digit number, but the two $1$s she typed didn't show. What appeared was $2002$. How many different six-digit numbers could she have typed? $\textbf{(A) }4\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }15\qquad\textbf{(E) }20$

1999 IMO Shortlist, 7

Let $p >3$ be a prime number. For each nonempty subset $T$ of $\{0,1,2,3, \ldots , p-1\}$, let $E(T)$ be the set of all $(p-1)$-tuples $(x_1, \ldots ,x_{p-1} )$, where each $x_i \in T$ and $x_1+2x_2+ \ldots + (p-1)x_{p-1}$ is divisible by $p$ and let $|E(T)|$ denote the number of elements in $E(T)$. Prove that \[|E(\{0,1,3\})| \geq |E(\{0,1,2\})|\] with equality if and only if $p = 5$.

1998 Iran MO (3rd Round), 6

For any two nonnegative integers $n$ and $k$ satisfying $n\geq k$, we define the number $c(n,k)$ as follows: - $c\left(n,0\right)=c\left(n,n\right)=1$ for all $n\geq 0$; - $c\left(n+1,k\right)=2^{k}c\left(n,k\right)+c\left(n,k-1\right)$ for $n\geq k\geq 1$. Prove that $c\left(n,k\right)=c\left(n,n-k\right)$ for all $n\geq k\geq 0$.

2019 CMI B.Sc. Entrance Exam, 1

For a natural number $n$ denote by Map $( n )$ the set of all functions $f : \{ 1 , 2 , 3 , \cdots , n \} \rightarrow \{ 1 , 2 , 3 , \cdots , n \} . $ For $ f , g \in $ Map$( n ) , f \circ g $ denotes the function in Map $( n )$ that sends $x \rightarrow f ( g ( x ) ) . $ \\ \\ $(a)$ Let $ f \in$ Map $( n ) . $ If for all $x \in \{ 1 , 2 , 3 , \cdots , n \} f ( x ) \neq x , $ show that $ f \circ f \neq f $ \\$(b)$ Count the number of functions $ f \in$ Map $( n )$ such that $ f \circ f = f $

2006 AMC 12/AHSME, 25

How many non-empty subsets $ S$ of $ \{1, 2, 3, \ldots, 15\}$ have the following two properties? (1) No two consecutive integers belong to $ S$. (2) If $ S$ contains $ k$ elements, then $ S$ contains no number less than $ k$. $ \textbf{(A) } 277\qquad \textbf{(B) } 311\qquad \textbf{(C) } 376\qquad \textbf{(D) } 377\qquad \textbf{(E) } 405$

2000 AMC 10, 13

There are $5$ yellow pegs, $4$ red pegs, $3$ green pegs, $2$ blue pegs, and $1$ orange peg on a triangular peg board. In how many ways can the pegs be placed so that no (horizontal) row or (vertical) column contains two pegs of the same color? [asy] unitsize(20); dot((0,0)); dot((1,0)); dot((2,0)); dot((3,0)); dot((4,0)); dot((0,1)); dot((1,1)); dot((2,1)); dot((3,1)); dot((0,2)); dot((1,2)); dot((2,2)); dot((0,3)); dot((1,3)); dot((0,4));[/asy] $\text{(A)}\ 0\qquad\text{(B)}\ 1\qquad\text{(C)}\ 5!\cdot4!\cdot3!\cdot2!\cdot1!\qquad\text{(D)}\ \frac{15!}{5!\cdot4!\cdot3!\cdot2!\cdot1!}\qquad\text{(E)}\ 15!$

1964 IMO Shortlist, 5

Supppose five points in a plane are situated so that no two of the straight lines joining them are parallel, perpendicular, or coincident. From each point perpendiculars are drawn to all the lines joining the other four points. Determine the maxium number of intersections that these perpendiculars can have.

2016 Canadian Mathematical Olympiad Qualification, 7

Starting at $(0, 0)$, Richard takes $2n+1$ steps, with each step being one unit either East, North, West, or South. For each step, the direction is chosen uniformly at random from the four possibilities. Determine the probability that Richard ends at $(1, 0)$.

2011 Belarus Team Selection Test, 3

In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied? [i]Proposed by Gerhard Wöginger, Austria[/i]