Found problems: 401
2020 LIMIT Category 1, 9
What is the sum of all two-digit positive integer $n<50$ for which the sum of the squares of first $n$ positive integers is not a divisor of $(2n)!$ ?
2014 NIMO Problems, 9
This is an ARML Super Relay! I'm sure you know how this works! You start from #1 and #15 and meet in the middle.
We are going to require you to solve all $15$ problems, though -- so for the entire task, submit the sum of all the answers, rather than just the answer to #8.
Also, uhh, we can't actually find the slip for #1. Sorry about that. Have fun anyways!
Problem 2.
Let $T = TNYWR$. Find the number of way to distribute $6$ indistinguishable pieces of candy to $T$ hungry (and distinguishable) schoolchildren, such that each child gets at most one piece of candy.
Problem 3.
Let $T = TNYWR$. If $d$ is the largest proper divisor of $T$, compute $\frac12 d$.
Problem 4.
Let $T = TNYWR$ and flip $4$ fair coins. Suppose the probability that at most $T$ heads appear is $\frac mn$, where $m$ and $n$ are coprime positive integers. Compute $m+n$.
Problem 5.
Let $T = TNYWR$. Compute the last digit of $T^T$ in base $10$.
Problem 6.
Let $T = TNYWR$ and flip $6$ fair coins. Suppose the probability that at most $T$ heads appear is $\frac mn$, where $m$ and $n$ are coprime positive integers. Compute $m+n$.
Problem 7.
Let $T = TNYWR$. Compute the smallest prime $p$ for which $n^T \not\equiv n \pmod{p}$ for some integer $n$.
Problem 8.
Let $M$ and $N$ be the two answers received, with $M \le N$. Compute the number of integer quadruples $(w,x,y,z)$ with $w+x+y+z = M \sqrt{wxyz}$ and $1 \le w,x,y,z \le N$.
Problem 9.
Let $T = TNYWR$. Compute the smallest integer $n$ with $n \ge 2$ such that $n$ is coprime to $T+1$, and there exists positive integers $a$, $b$, $c$ with $a^2+b^2+c^2 = n(ab+bc+ca)$.
Problem 10.
Let $T = TNYWR$ and flip $10$ fair coins. Suppose the probability that at most $T$ heads appear is $\frac mn$, where $m$ and $n$ are coprime positive integers. Compute $m+n$.
Problem 11.
Let $T = TNYWR$. Compute the last digit of $T^T$ in base $10$.
Problem 12.
Let $T = TNYWR$ and flip $12$ fair coins. Suppose the probability that at most $T$ heads appear is $\frac mn$, where $m$ and $n$ are coprime positive integers. Compute $m+n$.
Problem 13.
Let $T = TNYWR$. If $d$ is the largest proper divisor of $T$, compute $\frac12 d$.
Problem 14.
Let $T = TNYWR$. Compute the number of way to distribute $6$ indistinguishable pieces of candy to $T$ hungry (and distinguishable) schoolchildren, such that each child gets at most one piece of candy.
Also, we can't find the slip for #15, either. We think the SFBA coaches stole it to prevent us from winning the Super Relay, but that's not going to stop us, is it? We have another #15 slip that produces an equivalent answer. Here you go!
Problem 15.
Let $A$, $B$, $C$ be the answers to #8, #9, #10. Compute $\gcd(A,C) \cdot B$.
2022 AMC 10, 3
How many three-digit positive integers have an odd number of even digits?
$\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550$
2022-23 IOQM India, 24
Let $N$ be the number of ways of distributing $52$ identical balls into $4$ distinguishable boxes such that no box is empty and the difference between the number of balls in any two of the boxes is not a multiple of $6$ If $N=100a+b$, where $a,b$ are positive integers less than $100$, find $a+b.$
1989 IMO Shortlist, 31
Let $ a_1 \geq a_2 \geq a_3 \in \mathbb{Z}^\plus{}$ be given and let N$ (a_1, a_2, a_3)$ be the number of solutions $ (x_1, x_2, x_3)$ of the equation
\[ \sum^3_{k\equal{}1} \frac{a_k}{x_k} \equal{} 1.\]
where $ x_1, x_2,$ and $ x_3$ are positive integers. Prove that \[ N(a_1, a_2, a_3) \leq 6 a_1 a_2 (3 \plus{} ln(2 a_1)).\]
2016 Fall CHMMC, 6
How many binary strings of length $10$ do not contain the substrings $101$ or $010$?
2024 AMC 10, 22
A group of $16$ people will be partitioned into $4$ indistinguishable $4$-person committees. Each committee will have one chairperson and one secretary. The number of different ways to make these assignments can be written as $3^r M,$ where $r$ and $M$ are positive integers and $M$ is not divisible by $3.$ What is $r?$
$\textbf{(A) }5 \qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9$
1992 India National Olympiad, 4
Find the number of permutations $( p_1, p_2, p_3 , p_4 , p_5 , p_6)$ of $1, 2 ,3,4,5,6$ such that for any $k, 1 \leq k \leq 5$, $(p_1, \ldots, p_k)$ does not form a permutation of $1 , 2, \ldots, k$.
2005 AIME Problems, 5
Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins. Each coin has an engraving of one face on one side, but not on the other. He wants to stack the eight coins on a table into a single stack so that no two adjacent coins are face to face. Find the number of possible distinguishable arrangements of the 8 coins.
1986 IMO Longlists, 43
Three persons $A,B,C$, are playing the following game:
A $k$-element subset of the set $\{1, . . . , 1986\}$ is randomly chosen, with an equal probability of each choice, where $k$ is a fixed positive integer less than or equal to $1986$. The winner is $A,B$ or $C$, respectively, if the sum of the chosen numbers leaves a remainder of $0, 1$, or $2$ when divided by $3$.
For what values of $k$ is this game a fair one? (A game is fair if the three outcomes are equally probable.)
2020 LIMIT Category 2, 1
Find the number of $f:\{1,\ldots, 5\}\to \{1,\ldots, 5\}$ such that $f(f(x))=x$
(A)$26$
(B)$41$
(C)$120$
(D)$60$
1969 IMO Shortlist, 51
$(NET 6)$ A curve determined by $y =\sqrt{x^2 - 10x+ 52}, 0\le x \le 100,$ is constructed in a rectangular grid. Determine the number of squares cut by the curve.
1995 IMO, 6
Let $ p$ be an odd prime number. How many $ p$-element subsets $ A$ of $ \{1,2,\dots,2p\}$ are there, the sum of whose elements is divisible by $ p$?
ICMC 4, 1
Let \(S\) be a set with 10 distinct elements. A set \(T\) of subsets of \(S\) (possibly containing the empty set) is called [i]union-closed[/i] if, for all \(A, B \in T\), it is true that \(A \cup B \in T\). Show that the number of union-closed sets \(T\) is less than \(2^{1023}\).
[i]Proposed by Tony Wang[/i]
1987 IMO Longlists, 21
Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.[i](IMO Problem 1)[/i]
[b][i]Original formulation [/i][/b]
Let $S$ be a set of $n$ elements. We denote the number of all permutations of $S$ that have exactly $k$ fixed points by $p_n(k).$ Prove:
(a) $\sum_{k=0}^{n} kp_n(k)=n! \ ;$
(b) $\sum_{k=0}^{n} (k-1)^2 p_n(k) =n! $
[i]Proposed by Germany, FR[/i]
2016 India Regional Mathematical Olympiad, 2
At an international event there are $100$ countries participating, each with its own flag. There are $10$ distinct flagpoles at the stadium, labelled 1,#2,...,#10 in a row. In how many ways can all the $100$ flags be hoisted on these $10$ flagpoles, such that for each $i$ from $1$ to $10$, the flagpole #i has at least $i$ flags? (Note that the vertical order of the flagpoles on each flag is important)
1969 IMO Shortlist, 40
$(MON 1)$ Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.
2021 Bangladeshi National Mathematical Olympiad, 6
On a table near the sea, there are $N$ glass boxes where $N<2021$, each containing exactly $2021$ balls. Sowdha and Rafi play a game by taking turns on the boxes where Sowdha takes the first turn. In each turn, a player selects a non-empty box and throws out some of the balls from it into the sea. If a player wants, he can throw out all of the balls in the selected box. The player who throws out the last ball wins. Let $S$ be the sum of all values of $N$ for which Sowdha has a winning strategy and let $R$ be the sum of all values of $N$ for which Rafi has a winning strategy. What is the value of $\frac{R-S}{10}$?
2009 Stanford Mathematics Tournament, 1
In the future, each country in the world produces its Olympic athletes via cloning and strict training
programs. Therefore, in the finals of the 200 m free, there are two indistinguishable athletes from each
of the four countries. How many ways are there to arrange them into eight lanes?
1995 AMC 12/AHSME, 29
For how many three-element sets of positive integers $\{a,b,c\}$ is it true that $a \times b \times c = 2310$?
$\textbf{(A)}\ 32 \qquad
\textbf{(B)}\ 36 \qquad
\textbf{(C)}\ 40 \qquad
\textbf{(D)}\ 43 \qquad
\textbf{(E)}\ 45$
1999 IMO Shortlist, 6
For $n \geq 3$ and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ given real numbers we have the following instructions:
- place out the numbers in some order in a ring;
- delete one of the numbers from the ring;
- if just two numbers are remaining in the ring: let $S$ be the sum of these two numbers. Otherwise, if there are more the two numbers in the ring, replace
Afterwards start again with the step (2). Show that the largest sum $S$ which can result in this way is given by the formula
\[S_{max}= \sum^n_{k=2} \begin{pmatrix} n -2 \\
[\frac{k}{2}] - 1\end{pmatrix}a_{k}.\]
2022 CIIM, 4
Given a positive integer $n$, determine how many permutations $\sigma$ of the set $\{1, 2, \ldots , 2022n\}$ have the following property: for each $i \in \{1, 2, \ldots , 2021n + 1\}$, the number $$\sigma(i) + \sigma(i + 1) + \cdots + \sigma(i + n - 1)$$ is a multiple of $n$.
2018 India IMO Training Camp, 2
A $10$ digit number is called interesting if its digits are distinct and is divisible by $11111$. Then find the number of interesting numbers.
2007 Korea Junior Math Olympiad, 3
Consider the string of length $6$ composed of three characters $a, b, c$. For each string, if two $a$s are next to each other, or two $b$s are next to each other, then replace $aa$ by $b$, and replace $bb$ by $a$. Also, if $a$ and $b$ are next to each other, or two $c$s are next to each other, remove all two of them (i.e. delete $ab, ba, cc$). Determine the number of strings that can be reduced to $c$, the string of length $1$, by the reducing processes mentioned above.
2017 AMC 10, 18
In the figure below, $3$ of the $6$ disks are to be painted blue, $2$ are to be painted red, and $1$ is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible?
[asy]
size(100);
pair A, B, C, D, E, F;
A = (0,0);
B = (1,0);
C = (2,0);
D = rotate(60, A)*B;
E = B + D;
F = rotate(60, A)*C;
draw(Circle(A, 0.5));
draw(Circle(B, 0.5));
draw(Circle(C, 0.5));
draw(Circle(D, 0.5));
draw(Circle(E, 0.5));
draw(Circle(F, 0.5));
[/asy]
$\textbf{(A) } 6 \qquad \textbf{(B) } 8 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$