This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

1987 Traian Lălescu, 2.2

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} ,f(x)=\left\{\begin{matrix} \sin x , & x\not\in\mathbb{Q} \\ 0, & x\in\mathbb{Q}\end{matrix}\right. . $ [b]a)[/b] Determine the maximum length of an interval $ I\subset\mathbb{R} $ such that $ f|_I $ is discontinuous everywhere, yet has the intermediate value property. [b]b)[/b] Study the convergence of the sequence $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ defined by $ x_0\in (0,\pi /2),x_{n+1}=f\left( x_n\right),\forall n\ge 0. $

2022 District Olympiad, P1

Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions which satisfy \[\inf_{x>a}f(x)=g(a)\text{ and }\sup_{x<a}g(x)=f(a),\]for all $a\in\mathbb{R}.$ Given that $f$ has Darboux's Property (intermediate value property), show that functions $f$ and $g$ are continuous and equal to each other. [i]Mathematical Gazette [/i]

2004 Alexandru Myller, 4

Let be a real function that has the intermediate value property and is monotone on the irrationals. Show that it's continuous. [i]Mihai Piticari[/i]

2007 Nicolae Păun, 4

Construct a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following properties: $ \text{(i)} f $ is not monotonic on any real interval. $ \text{(ii)} f $ has Darboux property (intermediate value property) on any real interval. $ \text{(iii)} f(x)\leqslant f\left( x+1/n \right) ,\quad \forall x\in\mathbb{R} ,\quad \forall n\in\mathbb{N} $ [i]Alexandru Cioba[/i]

2011 Gheorghe Vranceanu, 2

Let $ f:[0,1]\longrightarrow (0,\infty ) $ be a continuous function and $ \left( b_n \right)_{n\ge 1} $ be a sequence of numbers from the interval $ (0,1) $ that converge to $ 0. $ [b]a)[/b] Demonstrate that for any fixed $ n, $ the equation $ F(x)=b_nF(1)+\left( 1-b_n\right) F(0) $ has an unique solution, namely $ x_n, $ where $ F $ is a primitive of $ f. $ [b]b)[/b] Calculate $ \lim_{n\to\infty } \frac{x_n}{b_n} . $