This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 128

2004 Germany Team Selection Test, 3

Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n \minus{} 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b \equal{} 10$: [i]there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.[/i] [i]Proposed by Laurentiu Panaitopol, Romania[/i]

2004 Germany Team Selection Test, 3

Let $f(k)$ be the number of integers $n$ satisfying the following conditions: (i) $0\leq n < 10^k$ so $n$ has exactly $k$ digits (in decimal notation), with leading zeroes allowed; (ii) the digits of $n$ can be permuted in such a way that they yield an integer divisible by $11$. Prove that $f(2m) = 10f(2m-1)$ for every positive integer $m$. [i]Proposed by Dirk Laurie, South Africa[/i]

1978 Bundeswettbewerb Mathematik, 4

A prime number has the property that however its decimal digits are permuted, the obtained number is also prime. Prove that this number has at most three different digits. Also prove a stronger statement.

1969 IMO Shortlist, 56

Let $a$ and $b$ be two natural numbers that have an equal number $n$ of digits in their decimal expansions. The first $m$ digits (from left to right) of the numbers $a$ and $b$ are equal. Prove that if $m >\frac{n}{2},$ then $a^{\frac{1}{n}} -b^{\frac{1}{n}} <\frac{1}{n}$

1962 IMO, 1

Find the smallest natural number $n$ which has the following properties: a) Its decimal representation has a 6 as the last digit. b) If the last digit 6 is erased and placed in front of the remaining digits, the resulting number is four times as large as the original number $n$.

1940 Moscow Mathematical Olympiad, 056

How many zeros does $100!$ have at its end in the usual decimal representation?

1978 IMO Shortlist, 3

Let $ m$ and $ n$ be positive integers such that $ 1 \le m < n$. In their decimal representations, the last three digits of $ 1978^m$ are equal, respectively, to the last three digits of $ 1978^n$. Find $ m$ and $ n$ such that $ m \plus{} n$ has its least value.

1972 IMO Longlists, 22

Show that for any $n \not \equiv 0 \pmod{10}$ there exists a multiple of $n$ not containing the digit $0$ in its decimal expansion.

1989 Bundeswettbewerb Mathematik, 1

For a given positive integer $n$, let $f(x) =x^{n}$. Is it possible for the decimal number $$0.f(1)f(2)f(3)\ldots$$ to be rational? (Example: for $n=2$, we are considering $0.1491625\ldots$)

1972 IMO Shortlist, 6

Show that for any $n \not \equiv 0 \pmod{10}$ there exists a multiple of $n$ not containing the digit $0$ in its decimal expansion.

2016 Korea Summer Program Practice Test, 3

Let $p > 10^9$ be a prime number such that $4p + 1$ is also prime. Prove that the decimal expansion of $\frac{1}{4p+1}$ contains all the digits $0,1, \ldots, 9$.

1999 IMO Shortlist, 4

Denote by S the set of all primes such the decimal representation of $\frac{1}{p}$ has the fundamental period divisible by 3. For every $p \in S$ such that $\frac{1}{p}$ has the fundamental period $3r$ one may write \[\frac{1}{p}=0,a_{1}a_{2}\ldots a_{3r}a_{1}a_{2} \ldots a_{3r} \ldots , \] where $r=r(p)$; for every $p \in S$ and every integer $k \geq 1$ define $f(k,p)$ by \[ f(k,p)= a_{k}+a_{k+r(p)}+a_{k+2.r(p)}\] a) Prove that $S$ is infinite. b) Find the highest value of $f(k,p)$ for $k \geq 1$ and $p \in S$

1967 IMO Shortlist, 1

Prove that all numbers of the sequence \[ \frac{107811}{3}, \quad \frac{110778111}{3}, \frac{111077781111}{3}, \quad \ldots \] are exact cubes.

1991 IMO Shortlist, 15

Let $ a_n$ be the last nonzero digit in the decimal representation of the number $ n!.$ Does the sequence $ a_1, a_2, \ldots, a_n, \ldots$ become periodic after a finite number of terms?

2019 Romania EGMO TST, P2

Determine the digits $0\leqslant c\leqslant 9$ such that for any positive integer $k{}$ there exists a positive integer $n$ such that the last $k{}$ digits of $n^9$ are equal to $c{}.$

1990 IMO Longlists, 23

For a given positive integer $ k$ denote the square of the sum of its digits by $ f_1(k)$ and let $ f_{n\plus{}1}(k) \equal{} f_1(f_n(k)).$ Determine the value of $ f_{1991}(2^{1990}).$

1992 IMO Longlists, 54

Suppose that $n > m \geq 1$ are integers such that the string of digits $143$ occurs somewhere in the decimal representation of the fraction $\frac{m}{n}$. Prove that $n > 125.$

2021 China Team Selection Test, 3

Find all positive integer $n(\ge 2)$ and rational $\beta \in (0,1)$ satisfying the following: There exist positive integers $a_1,a_2,...,a_n$, such that for any set $I \subseteq \{1,2,...,n\}$ which contains at least two elements, $$ S(\sum_{i\in I}a_i)=\beta \sum_{i\in I}S(a_i). $$ where $S(n)$ denotes sum of digits of decimal representation of $n$.

2017 Brazil National Olympiad, 1.

[b]1.[/b] For each real number $r$ between $0$ and $1$ we can represent $r$ as an infinite decimal $r = 0.r_1r_2r_3\dots$ with $0 \leq r_i \leq 9$. For example, $\frac{1}{4} = 0.25000\dots$, $\frac{1}{3} = 0.333\dots$ and $\frac{1}{\sqrt{2}} = 0.707106\dots$. a) Show that we can choose two rational numbers $p$ and $q$ between $0$ and $1$ such that, from their decimal representations $p = 0.p_1p_2p_3\dots$ and $q = 0.q_1q_2q_3\dots$, it's possible to construct an irrational number $\alpha = 0.a_1a_2a_3\dots$ such that, for each $i = 1, 2, 3, \dots$, we have $a_i = p_1$ or $a_1 = q_i$. b) Show that there's a rational number $s = 0.s_1s_2s_3\dots$ and an irrational number $\beta = 0.b_1b_2b_3\dots$ such that, for all $N \geq 2017$, the number of indexes $1 \leq i \leq N$ satisfying $s_i \neq b_i$ is less than or equal to $\frac{N}{2017}$.

2003 IMO Shortlist, 2

Each positive integer $a$ undergoes the following procedure in order to obtain the number $d = d\left(a\right)$: (i) move the last digit of $a$ to the first position to obtain the numb er $b$; (ii) square $b$ to obtain the number $c$; (iii) move the first digit of $c$ to the end to obtain the number $d$. (All the numbers in the problem are considered to be represented in base $10$.) For example, for $a=2003$, we get $b=3200$, $c=10240000$, and $d = 02400001 = 2400001 = d(2003)$.) Find all numbers $a$ for which $d\left( a\right) =a^2$. [i]Proposed by Zoran Sunic, USA[/i]

2021 Junior Balkan Team Selection Tests - Romania, P4

Let $n\geq 2$ be a positive integer. Prove that there exists a positive integer $m$, such that $n\mid m, \ m<n^4$ and at most four distinct digits are used in the decimal representation of $m$.

1999 Tournament Of Towns, 5

For every non-negative integer $i$, define the number $M(i)$ as follows: write $i$ down as a binary number, so that we have a string of zeroes and ones, if the number of ones in this string is even, then set $M(i) = 0$, otherwise set $M(i) = 1$. (The first terms of the sequence $M(i)$, $i = 0, 1, 2, ...$ are $0, 1, 1, 0, 1, 0, 0, 1,...$ ) (a) Consider the finite sequence $M(O), M(1), . . . , M(1000) $. Prove that there are at least $320$ terms in this sequence which are equal to their neighbour on the right : $M(i) = M(i + 1 )$ . (b) Consider the finite sequence $M(O), M(1), . . . , M(1000000)$ . Prove that the number of terms $M(i)$ such that $M(i) = M(i +7)$ is at least $450000$. (A Kanel)

2004 Germany Team Selection Test, 3

Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n \minus{} 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b \equal{} 10$: [i]there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.[/i] [i]Proposed by Laurentiu Panaitopol, Romania[/i]

2025 Kosovo National Mathematical Olympiad`, P3

Find all pairs of natural numbers $(m,n)$ such that the number $5^m+6^n$ has all same digits when written in decimal representation.

1976 IMO Longlists, 47

Prove that $5^n$ has a block of $1976$ consecutive $0's$ in its decimal representation.