This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

1990 IMO Longlists, 23

For a given positive integer $ k$ denote the square of the sum of its digits by $ f_1(k)$ and let $ f_{n\plus{}1}(k) \equal{} f_1(f_n(k)).$ Determine the value of $ f_{1991}(2^{1990}).$

1998 IMO Shortlist, 4

A sequence of integers $ a_{1},a_{2},a_{3},\ldots$ is defined as follows: $ a_{1} \equal{} 1$ and for $ n\geq 1$, $ a_{n \plus{} 1}$ is the smallest integer greater than $ a_{n}$ such that $ a_{i} \plus{} a_{j}\neq 3a_{k}$ for any $ i,j$ and $ k$ in $ \{1,2,3,\ldots ,n \plus{} 1\}$, not necessarily distinct. Determine $ a_{1998}$.

1967 IMO Longlists, 21

Without using tables, find the exact value of the product: \[P = \prod^7_{k=1} \cos \left(\frac{k \pi}{15} \right).\]

1992 IMO Longlists, 47

Evaluate \[\left \lfloor \ \prod_{n=1}^{1992} \frac{3n+2}{3n+1} \ \right \rfloor\]

1990 IMO Shortlist, 8

For a given positive integer $ k$ denote the square of the sum of its digits by $ f_1(k)$ and let $ f_{n\plus{}1}(k) \equal{} f_1(f_n(k)).$ Determine the value of $ f_{1991}(2^{1990}).$

1967 IMO Shortlist, 3

Without using tables, find the exact value of the product: \[P = \prod^7_{k=1} \cos \left(\frac{k \pi}{15} \right).\]

2012 IFYM, Sozopol, 6

Calculate the sum $1+\frac{\binom{2}{1}}{8}+\frac{\binom{4}{2}}{8^2}+\frac{\binom{6}{3}}{8^3}+...+\frac{\binom{2n}{n}}{8^n}+...$

2017 South East Mathematical Olympiad, 4

For any positive integer $n$, let $D_n$ denote the set of all positive divisors of $n$, and let $f_i(n)$ denote the size of the set $$F_i(n) = \{a \in D_n | a \equiv i \pmod{4} \}$$where $i = 0, 1, 2, 3$. Determine the smallest positive integer $m$ such that $f_0(m) + f_1(m) - f_2(m) - f_3(m) = 2017$.

2023 Bulgaria EGMO TST, 5

The positive integers $x_1$, $x_2$, $\ldots$, $x_5$, $x_6 = 144$ and $x_7$ are such that $x_{n+3} = x_{n+2}(x_{n+1}+x_n)$ for $n=1,2,3,4$. Determine the value of $x_7$.