Found problems: 128
1960 IMO, 1
Determine all three-digit numbers $N$ having the property that $N$ is divisible by 11, and $\dfrac{N}{11}$ is equal to the sum of the squares of the digits of $N$.
1978 IMO Longlists, 7
Let $ m$ and $ n$ be positive integers such that $ 1 \le m < n$. In their decimal representations, the last three digits of $ 1978^m$ are equal, respectively, to the last three digits of $ 1978^n$. Find $ m$ and $ n$ such that $ m \plus{} n$ has its least value.
2010 Princeton University Math Competition, 3
Find (with proof) all natural numbers $n$ such that, for some natural numbers $a$ and $b$, $a\ne b$, the digits in the decimal representations of the two numbers $n^a+1$ and $n^b+1$ are in reverse order.
1970 IMO Longlists, 42
We have $0\le x_i<b$ for $i=0,1,\ldots,n$ and $x_n>0,x_{n-1}>0$. If $a>b$, and $x_nx_{n-1}\ldots x_0$ represents the number $A$ base $a$ and $B$ base $b$, whilst $x_{n-1}x_{n-2}\ldots x_0$ represents the number $A'$ base $a$ and $B'$ base $b$, prove that $A'B<AB'$.
1990 IMO Longlists, 18
Find, with proof, the least positive integer $n$ having the following property: in the binary representation of $\frac 1n$, all the binary representations of $1, 2, \ldots, 1990$ (each consist of consecutive digits) are appeared after the decimal point.
1966 IMO Shortlist, 54
We take $100$ consecutive natural numbers $a_{1},$ $a_{2},$ $...,$ $a_{100}.$ Determine the last two digits of the number $a_{1}^{8}+a_{2}^{8}+...+a_{100}^{8}.$
1990 IMO Shortlist, 8
For a given positive integer $ k$ denote the square of the sum of its digits by $ f_1(k)$ and let $ f_{n\plus{}1}(k) \equal{} f_1(f_n(k)).$ Determine the value of $ f_{1991}(2^{1990}).$
1968 IMO, 2
Find all natural numbers $n$ the product of whose decimal digits is $n^2-10n-22$.
1969 IMO Longlists, 56
Let $a$ and $b$ be two natural numbers that have an equal number $n$ of digits in their decimal expansions. The first $m$ digits (from left to right) of the numbers $a$ and $b$ are equal. Prove that if $m >\frac{n}{2},$ then $a^{\frac{1}{n}} -b^{\frac{1}{n}} <\frac{1}{n}$
1998 Israel National Olympiad, 2
Show that there is a multiple of $2^{1998}$ whose decimal representation consists only of the digits $1$ and $2$.
2012 Ukraine Team Selection Test, 6
For the positive integer $k$ we denote by the $a_n$ , the $k$ from the left digit in the decimal notation of the number $2^n$ ($a_n = 0$ if in the notation of the number $2^n$ less than the digits). Consider the infinite decimal fraction $a = \overline{0, a_1a_2a_3...}$. Prove that the number $a$ is irrational.
2004 Germany Team Selection Test, 3
Let $f(k)$ be the number of integers $n$ satisfying the following conditions:
(i) $0\leq n < 10^k$ so $n$ has exactly $k$ digits (in decimal notation), with leading zeroes allowed;
(ii) the digits of $n$ can be permuted in such a way that they yield an integer divisible by $11$.
Prove that $f(2m) = 10f(2m-1)$ for every positive integer $m$.
[i]Proposed by Dirk Laurie, South Africa[/i]
1977 Germany Team Selection Test, 4
When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)
1976 IMO Shortlist, 11
Prove that $5^n$ has a block of $1976$ consecutive $0's$ in its decimal representation.
1969 IMO Longlists, 40
$(MON 1)$ Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.
2012 Danube Mathematical Competition, 2
Consider the natural number prime $p, p> 5$. From the decimal number $\frac1p$, randomly remove $2012$ numbers, after the comma. Show that the remaining number can be represented as $\frac{a}{b}$ , where $a$ and $b$ are coprime numbers , and $b$ is multiple of $p$.
2023 Brazil National Olympiad, 1
A positive integer is called [i]vaivém[/i] when, considering its representation in base ten, the first digit from left to right is greater than the second, the second is less than the third, the third is bigger than the fourth and so on alternating bigger and smaller until the last digit. For example, $2021$ is [i]vaivém[/i], as $2 > 0$ and $0 < 2$ and $2 > 1$. The number $2023$ is not [i]vaivém[/i], as $2 > 0$ and $0 < 2$, but $2$ is not greater than $3$.
a) How many [i]vaivém[/i] positive integers are there from $2000$ to $2100$?
b) What is the largest [i]vaivém[/i] number without repeating digits?
c) How many distinct $7$-digit numbers formed by all the digits $1, 2, 3, 4, 5, 6$ and $7$ are [i]vaivém[/i]?
1966 IMO Longlists, 54
We take $100$ consecutive natural numbers $a_{1},$ $a_{2},$ $...,$ $a_{100}.$ Determine the last two digits of the number $a_{1}^{8}+a_{2}^{8}+...+a_{100}^{8}.$
2014 India IMO Training Camp, 2
Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.
2002 Germany Team Selection Test, 3
Prove that there is no positive integer $n$ such that, for $k = 1,2,\ldots,9$, the leftmost digit (in decimal notation) of $(n+k)!$ equals $k$.
1966 IMO Longlists, 12
Find digits $x, y, z$ such that the equality
\[\sqrt{\underbrace{\overline{xx\cdots x}}_{2n \text{ times}}-\underbrace{\overline{yy\cdots y}}_{n \text{ times}}}=\underbrace{\overline{zz\cdots z}}_{n \text{ times}}\]
holds for at least two values of $n \in \mathbb N$, and in that case find all $n$ for which this equality is true.
1970 IMO Shortlist, 2
We have $0\le x_i<b$ for $i=0,1,\ldots,n$ and $x_n>0,x_{n-1}>0$. If $a>b$, and $x_nx_{n-1}\ldots x_0$ represents the number $A$ base $a$ and $B$ base $b$, whilst $x_{n-1}x_{n-2}\ldots x_0$ represents the number $A'$ base $a$ and $B'$ base $b$, prove that $A'B<AB'$.
2004 IMO Shortlist, 5
We call a positive integer [i]alternating[/i] if every two consecutive digits in its decimal representation are of different parity.
Find all positive integers $n$ such that $n$ has a multiple which is alternating.
1980 IMO Longlists, 6
Find the digits left and right of the decimal point in the decimal form of the number \[ (\sqrt{2} + \sqrt{3})^{1980}. \]
2015 Lusophon Mathematical Olympiad, 2
Determine all ten-digit numbers whose decimal $\overline{a_0a_1a_2a_3a_4a_5a_6a_7a_8a_9}$ is given by such that for each integer $j$ with $0\le j \le 9, a_j$ is equal to the number of digits equal to $j$ in this representation.
That is: the first digit is equal to the amount of "$0$" in the writing of that number, the second digit is equal to the amount of "$1$" in the writing of that number, the third digit is equal to the amount of "$2$" in the writing of that number, ... , the tenth digit is equal to the number of "$9$" in the writing of that number.