This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2021 Nigerian MO Round 3, Problem 5

Let $f(x)=\frac{P(x)}{Q(x)}$, where $P(x), Q(x)$ are two non-constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ for infinitely many values of $x$. a) Show that $\text{deg}(P)<\text{deg}(Q)$. b) Show that $P'(1)=2Q'(1)-\text{deg}(Q)\cdot Q(1)$. Here, $P'(x)$ denotes the derivative of $P(x)$ as usual.

1974 IMO, 6

Let $P(x)$ be a polynomial with integer coefficients. We denote $\deg(P)$ its degree which is $\geq 1.$ Let $n(P)$ be the number of all the integers $k$ for which we have $(P(k))^{2}=1.$ Prove that $n(P)- \deg(P) \leq 2.$

1974 IMO Shortlist, 3

Let $P(x)$ be a polynomial with integer coefficients. We denote $\deg(P)$ its degree which is $\geq 1.$ Let $n(P)$ be the number of all the integers $k$ for which we have $(P(k))^{2}=1.$ Prove that $n(P)- \deg(P) \leq 2.$

2016 Israel National Olympiad, 5

The Fibonacci sequence $F_n$ is defined by $F_1=F_2=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ for all integers $n\geq3$. Let $m,n\geq1$ be integers. Find the minimal degree $d$ for which there exists a polynomial $f(x)=a_dx^d+a_{d-1}x^{d-1}+\dots+a_1x+a_0$, which satisfies $f(k)=F_{m+k}$ for all $k=0,1,...,n$.

2024 VJIMC, 3

Let $n$ be a positive integer and let $G$ be a simple undirected graph on $n$ vertices. Let $d_i$ be the degree of its $i$-th vertex, $i = 1, \dots , n$. Denote $\Delta=\max d_i$. Prove that if \[\sum_{i=1}^n d_i^2>n\Delta(n-\Delta),\] then $G$ contains a triangle.

1989 Bundeswettbewerb Mathematik, 1

Determine the polynomial $$f(x) = x^k + a_{k-1} x^{k-1}+\cdots +a_1 x +a_0 $$ of smallest degree such that $a_i \in \{-1,0,1\}$ for $0\leq i \leq k-1$ and $f(n)$ is divisible by $30$ for all positive integers $n$.