This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

2012 Ukraine Team Selection Test, 6

For the positive integer $k$ we denote by the $a_n$ , the $k$ from the left digit in the decimal notation of the number $2^n$ ($a_n = 0$ if in the notation of the number $2^n$ less than the digits). Consider the infinite decimal fraction $a = \overline{0, a_1a_2a_3...}$. Prove that the number $a$ is irrational.

2011 Tournament of Towns, 5

We will call a positive integer [i]good [/i] if all its digits are nonzero. A good integer will be called [i]special [/i] if it has at least $k$ digits and their values strictly increase from left to right. Let a good integer be given. At each move, one may either add some special integer to its digital expression from the left or from the right, or insert a special integer between any two its digits, or remove a special number from its digital expression.What is the largest $k$ such that any good integer can be turned into any other good integer by such moves?

1970 All Soviet Union Mathematical Olympiad, 136

Given five $n$-digit binary numbers. For each two numbers their digits coincide exactly on $m$ places. There is no place with the common digit for all the five numbers. Prove that $$2/5 \le m/n \le 3/5$$

2006 Tournament of Towns, 3

The $n$-th digit of number $a = 0.12457...$ equals the first digit of the integer part of the number $n\sqrt2$. Prove that $a$ is irrational number. (6)

2004 All-Russian Olympiad Regional Round, 11.6

Let us call the [i]distance [/i] between the numbers $\overline{a_1a_2a_3a_4a_5}$ and $\overline{b_1b_2b_3b_4b_5}$ the maximum $i$ for which $a_i \ne b_i$. All five-digit numbers are written out one after another in some order. What is the minimum possible sum of distances between adjacent numbers?

2011 Portugal MO, 1

A nine-digit telephone number [i]abcdefghi [/i] is called [i]memorizable [/i] if the sequence of four initial digits [i]abcd [/i] is repeated in the sequence of the final five digits [i]efghi[/i]. How many [i]memorizable [/i] numbers of nine digits exist?

2021 Auckland Mathematical Olympiad, 3

Alice and Bob are independently trying to figure out a secret password to Cathy’s bitcoin wallet. Both of them have already figured out that: $\bullet$ it is a $4$-digit number whose first digit is $5$. $\bullet$ it is a multiple of $9$; $\bullet$ The larger number is more likely to be a password than a smaller number. Moreover, Alice figured out the second and the third digits of the password and Bob figured out the third and the fourth digits. They told this information to each other but not actual digits. After that the conversation followed: Alice: ”I have no idea what the number is.” Bob: ”I have no idea too.” After that both of them knew which number they should try first. Identify this number

2013 Czech-Polish-Slovak Junior Match, 4

Determine the largest two-digit number $d$ with the following property: for any six-digit number $\overline{aabbcc}$ number $d$ is a divisor of the number $\overline{aabbcc}$ if and only if the number $d$ is a divisor of the corresponding three-digit number $\overline{abc}$. Note The numbers $a \ne 0, b$ and $c$ need not be different.

1955 Kurschak Competition, 2

How many five digit numbers are divisible by $3$ and contain the digit $6$?

1977 Germany Team Selection Test, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1970 All Soviet Union Mathematical Olympiad, 132

The digits of the $17$-digit number are rearranged in the reverse order. Prove that at list one digit of the sum of the new and the initial number is even.

1987 Tournament Of Towns, (150) 1

Prove that the second last digit of each power of three is even . (V . I . Plachkos)

1976 IMO Shortlist, 11

Prove that $5^n$ has a block of $1976$ consecutive $0's$ in its decimal representation.

1999 Singapore MO Open, 2

Call a natural number $n$ a [i]magic [/i] number if the number obtained by putting $n$ on the right of any natural number is divisible by $n$. Find the number of magic numbers less than $500$. Justify your answer

1974 Czech and Slovak Olympiad III A, 3

Let $m\ge10$ be any positive integer such that all its decimal digits are distinct. Denote $f(m)$ sum of positive integers created by all non-identical permutations of digits of $m,$ e.g. \[f(302)=320+023+032+230+203=808.\] Determine all positive integers $x$ such that \[f(x)=138\,012.\]

1965 Spain Mathematical Olympiad, 2

Tags: digit
How many numbers of $3$ digits have their central digit greater than any of the other two? How many of them have also three different digits?

2020 Polish Junior MO First Round, 1.

Determine all natural numbers $n$, such that it's possible to insert one digit at the right side of $n$ to obtain $13n$.

1974 All Soviet Union Mathematical Olympiad, 197

Find all the natural $n$ and $k$ such that $n^n$ has $k$ digits and $k^k$ has $n$ digits.

1982 Austrian-Polish Competition, 4

Let $P(x)$ denote the product of all (decimal) digits of a natural number $x$. For any positive integer $x_1$, define the sequence $(x_n)$ recursively by $x_{n+1} = x_n + P(x_n)$. Prove or disprove that the sequence $(x_n)$ is necessarily bounded.

1969 IMO Longlists, 40

$(MON 1)$ Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.

2008 Flanders Math Olympiad, 1

Determine all natural numbers $n$ of $4$ digits whose quadruple minus the number formed by the digits of $n$ in reverse order equals $30$.

2018 Regional Olympiad of Mexico Center Zone, 1

Let $M$ and $N$ be two positive five-digit palindrome integers, such that $M <N$ and there is no other palindrome number between them. Determine the possible values ​​of $N-M$.

2021 Pan-American Girls' Math Olympiad, Problem 4

Lucía multiplies some positive one-digit numbers (not necessarily distinct) and obtains a number $n$ greater than 10. Then, she multiplies all the digits of $n$ and obtains an odd number. Find all possible values of the units digit of $n$. $\textit{Proposed by Pablo Serrano, Ecuador}$

1969 All Soviet Union Mathematical Olympiad, 122

Find four different three-digit decimal numbers starting with the same digit, such that their sum is divisible by three of them.

2015 Estonia Team Selection Test, 7

Prove that for every prime number $p$ and positive integer $a$, there exists a natural number $n$ such that $p^n$ contains $a$ consecutive equal digits.