Found problems: 44
2022-IMOC, C3
There are three types of piece shown as below. Today Alice wants to cover a $100 \times 101$ board with these pieces without gaps and overlaps. Determine the minimum number of $1\times 1$ pieces should be used to cover the whole board and not exceed the board. (There are an infinite number of these three types of pieces.)
[asy]
size(9cm,0);
defaultpen(fontsize(12pt));
draw((9,10) -- (59,10) -- (59,60) -- (9,60) -- cycle);
draw((59,10) -- (109,10) -- (109,60) -- (59,60) -- cycle);
draw((9,60) -- (59,60) -- (59,110) -- (9,110) -- cycle);
draw((9,110) -- (59,110) -- (59,160) -- (9,160) -- cycle);
draw((109,10) -- (159,10) -- (159,60) -- (109,60) -- cycle);
draw((180,11) -- (230,11) -- (230,61) -- (180,61) -- cycle);
draw((180,61) -- (230,61) -- (230,111) -- (180,111) -- cycle);
draw((230,11) -- (280,11) -- (280,61) -- (230,61) -- cycle);
draw((230,61) -- (280,61) -- (280,111) -- (230,111) -- cycle);
draw((280,11) -- (330,11) -- (330,61) -- (280,61) -- cycle);
draw((280,61) -- (330,61) -- (330,111) -- (280,111) -- cycle);
draw((330,11) -- (380,11) -- (380,61) -- (330,61) -- cycle);
draw((330,61) -- (380,61) -- (380,111) -- (330,111) -- cycle);
draw((401,11) -- (451,11) -- (451,61) -- (401,61) -- cycle);
[/asy]
[i]Proposed by amano_hina[/i]
Russian TST 2016, P1
The infinite checkered plane is divided into dominoes. If we move any horizontal domino of the partition by 49 cells to the right or left, we will also get a domino of the partition. If we move any vertical domino of the partition up or down by 49 cells, we will also get a domino of the partition. Can this happen?
2015 EGMO, 2
A [i]domino[/i] is a $2 \times 1$ or $1 \times 2$ tile. Determine in how many ways exactly $n^2$ dominoes can be placed without overlapping on a $2n \times 2n$ chessboard so that every $2 \times 2$ square contains at least two uncovered unit squares which lie in the same row or column.
2023 Silk Road, 2
Let $n$ be a positive integer. Each cell of a $2n\times 2n$ square is painted in one of the $4n^2$ colors (with some colors may be missing). We will call any two-cell rectangle a [i]domino[/I], and a domino is called [i]colorful[/I] if its cells have different colors. Let $k$ be the total number of colorful dominoes in our square; $l$ be the maximum integer such that every partition of the square into dominoes contains at least $l$ colorful dominoes. Determine the maximum possible value of $4l-k$ over all possible colourings of the square.
2011 Peru MO (ONEM), 4
A domino is a $1 \times 2$ (or 2 $\times 1$) rectangular piece; namely, made up of two squares. There is an $8 \times 8$ board such that each domino can be cover exactly two of its squares. John places $n$ dominoes on the board, so that each one covers exactly two squares of the board and it is no longer possible to place a piece more without overlapping with any of those already placed. Determine the smallest value of $n$ for which the described situation is possible.
2022 Macedonian Mathematical Olympiad, Problem 4
Sofia and Viktor are playing the following game on a $2022 \times 2022$ board:
- Firstly, Sofia covers the table completely by dominoes, no two are overlapping and all are inside the table;
- Then Viktor without seeing the table, chooses a positive integer $n$;
- After that Viktor looks at the table covered with dominoes, chooses and fixes $n$ of them;
- Finally, Sofia removes the remaining dominoes that aren't fixed and tries to recover the table with dominoes differently from before.
If she achieves that, she wins, otherwise Viktor wins. What is the minimum number $n$ for which Viktor can always win, no matter the starting covering of dominoes.
[i]Proposed by Viktor Simjanoski[/i]
2002 Mexico National Olympiad, 4
A domino has two numbers (which may be equal) between $0$ and $6$, one at each end. The domino may be turned around. There is one domino of each type, so $28$ in all. We want to form a chain in the usual way, so that adjacent dominos have the same number at the adjacent ends. Dominos can be added to the chain at either end. We want to form the chain so that after each domino has been added the total of all the numbers is odd. For example, we could place first the domino $(3,4)$, total $3 + 4 = 7$. Then $(1,3)$, total $1 + 3 + 3 + 4 = 11$, then $(4,4)$, total $11 + 4 + 4 = 19$. What is the largest number of dominos that can be placed in this way? How many maximum-length chains are there?
2001 Saint Petersburg Mathematical Olympiad, 11.7
Rectangles $1\times20$, $1\times 19$, ..., $1\times 1$ were cut out of $20\times20$ table. Prove that at least 85 dominoes(1×2 rectangle) can be removed from the remainder.
Proposed by S. Berlov
2022 Tuymaada Olympiad, 7
A $1 \times 5n$ rectangle is partitioned into tiles, each of the tile being either a separate $1 \times 1$ square or a broken domino consisting of two such squares separated by four squares (not belonging to the domino). Prove that the number of such partitions is a perfect fifth power.
[i](K. Kokhas)[/i]
2021 Dutch IMO TST, 4
On a rectangular board with $m \times n$ squares ($m, n \ge 3$) there are dominoes ($2 \times 1$ or $1\times 2$ tiles), which do not overlap and do not extend beyond the board. Every domino covers exactly two squares of the board. Assume that the dominos cover the has the property that no more dominos can be added to the board and that the four corner spaces of the board are not all empty. Prove that at least $2/3$ of the squares of the board are covered with dominos.
2023 Brazil EGMO Team Selection Test, 4
A cricket wants to move across a $2n \times 2n$ board that is entirely covered by dominoes, with no overlap. He jumps along the vertical lines of the board, always going from the midpoint of the vertical segment of a $1 \times 1$ square to another midpoint of the vertical segment, according to the rules:
$(i)$ When the domino is horizontal, the cricket jumps to the opposite vertical segment (such as from $P_2$ to $P_3$);
$(ii)$ When the domino is vertical downwards in relation to its position, the cricket jumps diagonally downwards (such as from $P_1$ to $P_2$);
$(iii)$ When the domino is vertically upwards relative to its position, the cricket jumps diagonally upwards (such as from $P_3$ to $P_4$).
The image illustrates a possible covering and path on the $4 \times 4$ board.
Considering that the starting point is on the first vertical line and the finishing point is on the last vertical line, prove that, regardless of the covering of the board and the height at which the cricket starts its path, the path ends at the same initial height.
Kvant 2019, M2576
A $8\times 8$ board is divided in dominoes (rectangles with dimensions $1 \times 2$ or $2 \times 1$).
[list=a]
[*] Prove that the total length of the border between horizontal and vertical dominoes is at most $52$.
[*] Determine the maximum possible total length of the border between horizontal and vertical dominoes.
[/list]
[i]Proposed by B. Frenkin, A. Zaslavsky, E. Arzhantseva[/i]
2022 Flanders Math Olympiad, 2
A domino is a rectangle whose length is twice its width.
Any square can be divided into seven dominoes, for example as shown in the figure below.
[img]https://cdn.artofproblemsolving.com/attachments/7/6/c055d8d2f6b7c24d38ded7305446721e193203.png[/img]
a) Show that you can divide a square into $n$ dominoes for all $n \ge 5$.
b) Show that you cannot divide a square into three or four dominoes.
2021 Dutch IMO TST, 4
On a rectangular board with $m \times n$ squares ($m, n \ge 3$) there are dominoes ($2 \times 1$ or $1\times 2$ tiles), which do not overlap and do not extend beyond the board. Every domino covers exactly two squares of the board. Assume that the dominos cover the has the property that no more dominos can be added to the board and that the four corner spaces of the board are not all empty. Prove that at least $2/3$ of the squares of the board are covered with dominos.
2009 Peru MO (ONEM), 4
Let $ n$ be a positive integer. A $4\times n$ rectangular grid is divided in$ 2\times 1$ or $1\times 2$ rectangles (as if it were completely covered with tiles of domino, no overlaps or gaps). Then all the grid points which are vertices of one of the $2\times 1$ or $1\times 2$ rectangles, are painted red. What is the least amount of red points you can get?
2012 Peru MO (ONEM), 3
A domino is a $1\times2$ or $2\times 1$ rectangle. Diego wants to completely cover a $6\times 6$ board using $18$ dominoes. Determine the smallest positive integer $k$ for which Diego can place $k$ dominoes on the board (without overlapping) such that what remains of the board can be covered uniquely using the remaining dominoes.
2001 Saint Petersburg Mathematical Olympiad, 9.1
All the cells of a $10\times10$ board are colored white initially. Two players are playing a game with alternating moves. A move consists of coloring any un-colored cell black. A player is considered to loose, if after his move no white domino is left. Which of the players has a winning strategy?
[I]Proposed by A. Khrabrov[/i]
2018 EGMO, 4
A domino is a $ 1 \times 2 $ or $ 2 \times 1 $ tile.
Let $n \ge 3 $ be an integer. Dominoes are placed on an $n \times n$ board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. The value of a row or column is the number of dominoes that cover at least one cell of this row or column. The configuration is called balanced if there exists some $k \ge 1 $ such that each row and each column has a value of $k$. Prove that a balanced configuration exists for every $n \ge 3 $, and find the minimum number of dominoes needed in such a configuration.
2021 Irish Math Olympiad, 4
You have a $3 \times 2021$ chessboard from which one corner square has been removed. You also have a set of $3031$ identical dominoes, each of which can cover two adjacent chessboard squares. Let $m$ be the number of ways in which the chessboard can be covered with the dominoes, without gaps or overlaps.
What is the remainder when $m$ is divided by $19$?
2015 Dutch Mathematical Olympiad, 2
On a $1000\times 1000$-board we put dominoes, in such a way that each domino covers exactly two squares on the board. Moreover, two dominoes are not allowed to be adjacent, but are allowed to touch in a vertex.
Determine the maximum number of dominoes that we can put on the board in this way.
[i]Attention: you have to really prove that a greater number of dominoes is impossible. [/i]
2001 Saint Petersburg Mathematical Olympiad, 10.4
Rectangles $1\times20$, $1\times 19$, ..., $1\times 1$ were cut out of $20\times20$ table. Prove that from the remaining part of the table $36$ $1\times2$ dominos can be cut
[I]Proposed by S. Berlov[/i]
2018 IFYM, Sozopol, 7
Let $x$ and $y$ be odd positive integers. A table $x$ x $y$ is given in which the squares with coordinates $(2,1)$, $(x - 2, y)$, and $(x, y)$ are cut. The remaining part of the table is covered in dominoes and squares [b]2 x 2[/b]. Prove that the dominoes in a valid covering of the table are at least
$\frac{3}{2}(x+y)-6$
Kvant 2023, M2774
In a $50\times 50$ checkered square, each cell is colored in one of the 100 given colors so that all colors are used and there does not exist a monochromatic domino. Galia wants to repaint all the cells of one of the colors in a different color (from the given 100 colors) so that a monochromatic domino still won't exist. Is it true that Galia will surely be able to do this
[i]Proposed by G. Sharafutdinova[/i]
2016 Peru MO (ONEM), 2
How many dominoes can be placed on a at least $3 \times 12$ board, such so that it is impossible to place a $1\times 3$, $3 \times 1$, or $ 2 \times 2$ tile on what remains of the board?
Clarification: Each domino covers exactly two squares on the board. The chips cannot overlap.
2017 IFYM, Sozopol, 7
We say that a polygon is rectangular when all of its angles are $90^\circ$ or $270^\circ$. Is it true that each rectangular polygon, which sides are with length equal to odd numbers only, [u]can't[/u] be covered with 2x1 domino tiles?