This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2005 India IMO Training Camp, 3

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]

1996 All-Russian Olympiad, 4

In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members. [i]A. Skopenkov[/i]

2013 Germany Team Selection Test, 3

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

2005 Germany Team Selection Test, 3

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2012 IMO Shortlist, C2

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

2004 IMO Shortlist, 2

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2006 Singapore MO Open, 4

Let $n$ be positive integer. Let $S_1,S_2,\cdots,S_k$ be a collection of $2n$-element subsets of $\{1,2,3,4,...,4n-1,4n\}$ so that $S_{i}\cap S_{j}$ contains at most $n$ elements for all $1\leq i<j\leq k$. Show that $$k\leq 6^{(n+1)/2}$$

2004 IMO Shortlist, 1

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]