This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

1981 Putnam, A3

Find $$ \lim_{t\to \infty} e^{-t} \int_{0}^{t} \int_{0}^{t} \frac{e^x -e^y }{x-y} \,dx\,dy,$$ or show that the limit does not exist.

1981 Putnam, B6

Let $C$ be a fixed unit circle in the cartesian plane. For any convex polygon $P$ , each of whose sides is tangent to $C$, let $N( P, h, k)$ be the number of points common to $P$ and the unit circle with center at $(h, k).$ Let $H(P)$ be the region of all points $(x, y)$ for which $N(P, x, y) \geq 1$ and $F(P)$ be the area of $H(P).$ Find the smallest number $u$ with $$ \frac{1}{F(P)} \int \int N(P,x,y)\;dx \;dy <u$$ for all polygons $P$, where the double integral is taken over $H(P).$

2018 VJIMC, 4

Compute the integral \[\iint_{\mathbb{R}^2} \left(\frac{1-e^{-xy}}{xy}\right)^2 e^{-x^2-y^2} dx dy.\]