This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

1964 Putnam, B2

Let $S$ be a set of $n>0$ elements, and let $A_1 , A_2 , \ldots A_k$ be a family of distinct subsets such that any two have a non-empty intersection. Assume that no other subset of $S$ intersects all of the $A_i.$ Prove that $ k=2^{n-1}.$

2016 Iranian Geometry Olympiad, 1

Ali wants to move from point $A$ to point $B$. He cannot walk inside the black areas but he is free to move in any direction inside the white areas (not only the grid lines but the whole plane). Help Ali to find the shortest path between $A$ and $B$. Only draw the path and write its length. [img]https://1.bp.blogspot.com/-nZrxJLfIAp8/W1RyCdnhl3I/AAAAAAAAIzQ/NM3t5EtJWMcWQS0ig0IghSo54DQUBH5hwCK4BGAYYCw/s1600/igo%2B2016.el1.png[/img] by Morteza Saghafian

2015 Iran Geometry Olympiad, 1

We have four wooden triangles with sides $3, 4, 5$ centimeters. How many convex polygons can we make by all of these triangles? (Just draw the polygons without any proof) A convex polygon is a polygon which all of it's angles are less than $180^o$ and there isn't any hole in it. For example: [img]https://1.bp.blogspot.com/-JgvF_B-uRag/W1R4f4AXxTI/AAAAAAAAIzc/Fo3qu3pxXcoElk01RTYJYZNwj0plJaKPQCK4BGAYYCw/s640/igo%2B2015.el1.png[/img]

2015 Iran Geometry Olympiad, 3

In the figure below, we know that $AB = CD$ and $BC = 2AD$. Prove that $\angle BAD = 30^o$. [img]https://3.bp.blogspot.com/-IXi_8jSwzlU/W1R5IydV5uI/AAAAAAAAIzo/2sREnDEnLH8R9zmAZLCkVCGeMaeITX9YwCK4BGAYYCw/s400/IGO%2B2015.el3.png[/img]

2015 Iran Geometry Olympiad, 2

Let $ABC$ be a triangle with $\angle A = 60^o$. The points $M,N,K$ lie on $BC,AC,AB$ respectively such that $BK = KM = MN = NC$. If $AN = 2AK$, find the values of $\angle B$ and $\angle C$. by Mahdi Etesami Fard