This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1970 Putnam, A5

Tags: circles , ellipsoid
Determine the radius of the largest circle which can lie on the ellipsoid $$\frac{x^2 }{a^2 } +\frac{ y^2 }{b^2 } +\frac{z^2 }{c^2 }=1 \;\;\;\; (a>b>c).$$

2020 Jozsef Wildt International Math Competition, W1

Consider the ellipsoid$$\frac{x^2}{a^2}+\frac{y^2}{a^2}+\frac{z^2}{b^2}=1$$($a$ and $b > 0$) and the ellipse $E$ which is the intersection of the ellipsoid with the plane of equation$$mx + ny + pz = 0$$where the point $P = [m, n, p]$ is a random point from the unit sphere $(m^2 + n^2 + p^2 = 1)$. Consider the random variable $A_E$ the area of the ellipse $E$. If the point $P$ is chosen with uniform distribution with respect to the area on the unit sphere, what is the expectation of $A_E$ ?