This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 52

2021 Greece Junior Math Olympiad, 4

Given a triangle$ABC$ with $AB<BC<AC$ inscribed in circle $(c)$. The circle $c(A,AB)$ (with center $A$ and radius $AB$) interects the line $BC$ at point $D$ and the circle $(c)$ at point $H$. The circle $c(A,AC)$ (with center $A$ and radius $AC$) interects the line $BC$ at point $Z$ and the circle $(c)$ at point $E$. Lines $ZH$ and $ED$ intersect at point $T$. Prove that the circumscribed circles of triangles $TDZ$ and $TEH$ are equal.

2016 BMT Spring, 14

Three circles of radius $1$ are inscribed in a square of side length $s$, such that the circles do not overlap or coincide with each other. What is the minimum $s$ where such a configuration is possible?