This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 181

2012 ELMO Shortlist, 3

Let $s(k)$ be the number of ways to express $k$ as the sum of distinct $2012^{th}$ powers, where order does not matter. Show that for every real number $c$ there exists an integer $n$ such that $s(n)>cn$. [i]Alex Zhu.[/i]

2018 Brazil Team Selection Test, 2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2007 Germany Team Selection Test, 2

An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that: $ (i)$ Each player plays in each round, and every two players meet at most once. $ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$. Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament. [i]Proposed by Carlos di Fiore, Argentina[/i]

2004 Germany Team Selection Test, 2

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

2007 Germany Team Selection Test, 2

An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that: $ (i)$ Each player plays in each round, and every two players meet at most once. $ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$. Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament. [i]Proposed by Carlos di Fiore, Argentina[/i]

2008 Brazil Team Selection Test, 4

Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

1990 IMO Longlists, 11

In a group of mathematicians, every mathematician has some friends (the relation of friend is reciprocal). Prove that there exists a mathematician, such that the average of the number of friends of all his friends is no less than the average of the number of friends of all these mathematicians.

1997 Pre-Preparation Course Examination, 1

Let $ k,m,n$ be integers such that $ 1 < n \leq m \minus{} 1 \leq k.$ Determine the maximum size of a subset $ S$ of the set $ \{1,2,3, \ldots, k\minus{}1,k\}$ such that no $ n$ distinct elements of $ S$ add up to $ m.$

1983 IMO Shortlist, 3

Let $ABC$ be an equilateral triangle and $\mathcal{E}$ the set of all points contained in the three segments $AB$, $BC$, and $CA$ (including $A$, $B$, and $C$). Determine whether, for every partition of $\mathcal{E}$ into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle.

1978 IMO, 3

An international society has its members from six different countries. The list of members contain $1978$ names, numbered $1, 2, \dots, 1978$. Prove that there is at least one member whose number is the sum of the numbers of two members from his own country, or twice as large as the number of one member from his own country.

1988 IMO Longlists, 18

Let $ N \equal{} \{1,2 \ldots, n\}, n \geq 2.$ A collection $ F \equal{} \{A_1, \ldots, A_t\}$ of subsets $ A_i \subseteq N,$ $ i \equal{} 1, \ldots, t,$ is said to be separating, if for every pair $ \{x,y\} \subseteq N,$ there is a set $ A_i \in F$ so that $ A_i \cap \{x,y\}$ contains just one element. $ F$ is said to be covering, if every element of $ N$ is contained in at least one set $ A_i \in F.$ What is the smallest value $ f(n)$ of $ t,$ so there is a set $ F \equal{} \{A_1, \ldots, A_t\}$ which is simultaneously separating and covering?

2018 Bulgaria EGMO TST, 2

A country has $100$ cities and $n$ airplane companies which take care of a total of $2018$ two-way direct flights between pairs of cities. There is a pair of cities such that one cannot reach one from the other with just one or two flights. What is the largest possible value of $n$ for which between any two cities there is a route (a sequence of flights) using only one of the airplane companies?

2016 IMO Shortlist, C5

Let $n \geq 3$ be a positive integer. Find the maximum number of diagonals in a regular $n$-gon one can select, so that any two of them do not intersect in the interior or they are perpendicular to each other.

1990 China National Olympiad, 5

Given a finite set $X$, let $f$ be a rule such that $f$ maps every [i]even-element-subset[/i] $E$ of $X$ (i.e. $E \subseteq X$, $|E|$ is even) into a real number $f(E)$. Suppose that $f$ satisfies the following conditions: (I) there exists an [i]even-element-subset[/i] $D$ of $X$ such that $f(D)>1990$; (II) for any two disjoint [i]even-element-subsets [/i]$A,B$ of $X$, equation $f(A\cup B)=f(A)+f(B)-1990$ holds. Prove that there exist two subsets $P,Q$ of $X$ satisfying: (1) $P\cap Q=\emptyset$, $P\cup Q=X$; (2) for any [i]non-even-element-subset [/i]$S$ of $P$ (i.e. $S\subseteq P$, $|S|$ is odd), we have $f(S)>1990$; (3) for any [i]even-element-subset[/i] $T$ of $Q$, we have $f(T)\le 1990$.

1992 IMO Longlists, 10

Consider $9$ points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of $\,n\,$ such that whenever exactly $\,n\,$ edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.

2011 IMO Shortlist, 7

On a square table of $2011$ by $2011$ cells we place a finite number of napkins that each cover a square of $52$ by $52$ cells. In each cell we write the number of napkins covering it, and we record the maximal number $k$ of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of $k$? [i]Proposed by Ilya Bogdanov and Rustem Zhenodarov, Russia[/i]

1969 IMO Shortlist, 60

$(SWE 3)$ Find the natural number $n$ with the following properties: $(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$ $(2)$ $n$ is the smallest integer with the above property.

2013 Brazil Team Selection Test, 3

In a $999 \times 999$ square table some cells are white and the remaining ones are red. Let $T$ be the number of triples $(C_1,C_2,C_3)$ of cells, the first two in the same row and the last two in the same column, with $C_1,C_3$ white and $C_2$ red. Find the maximum value $T$ can attain. [i]Proposed by Merlijn Staps, The Netherlands[/i]

1964 IMO Shortlist, 4

Seventeen people correspond by mail with one another-each one with all the rest. In their letters only three different topics are discussed. each pair of correspondents deals with only one of these topics. Prove that there are at least three people who write to each other about the same topic.

2001 IMO Shortlist, 8

Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.

1978 IMO Longlists, 30

An international society has its members from six different countries. The list of members contain $1978$ names, numbered $1, 2, \dots, 1978$. Prove that there is at least one member whose number is the sum of the numbers of two members from his own country, or twice as large as the number of one member from his own country.

1992 IMO Longlists, 39

Let $n \geq 2$ be an integer. Find the minimum $k$ for which there exists a partition of $\{1, 2, . . . , k\}$ into $n$ subsets $X_1,X_2, \cdots , X_n$ such that the following condition holds: for any $i, j, 1 \leq i < j \leq n$, there exist $x_i \in X_1, x_j \in X_2$ such that $|x_i - x_j | = 1.$

1986 IMO Longlists, 36

Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line $L$ parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on $L$ is not greater than $1$?

1992 IMO, 3

Consider $9$ points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of $\,n\,$ such that whenever exactly $\,n\,$ edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.

2004 China Team Selection Test, 2

Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.