This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 181

2016 Indonesia TST, 3

Let $\{E_1, E_2, \dots, E_m\}$ be a collection of sets such that $E_i \subseteq X = \{1, 2, \dots, 100\}$, $E_i \neq X$, $i = 1, 2, \dots, m$. It is known that every two elements of $X$ is contained together in exactly one $E_i$ for some $i$. Determine the minimum value of $m$.

1977 IMO, 2

In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

2001 USAMO, 1

Each of eight boxes contains six balls. Each ball has been colored with one of $n$ colors, such that no two balls in the same box are the same color, and no two colors occur together in more than one box. Determine, with justification, the smallest integer $n$ for which this is possible.

2006 China Team Selection Test, 2

Given positive integer $n$, find the biggest real number $C$ which satisfy the condition that if the sum of the reciprocals of a set of integers (They can be the same.) that are greater than $1$ is less than $C$, then we can divide the set of numbers into no more than $n$ groups so that the sum of reciprocals of every group is less than $1$.

1969 IMO Longlists, 60

$(SWE 3)$ Find the natural number $n$ with the following properties: $(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$ $(2)$ $n$ is the smallest integer with the above property.

1985 IMO Shortlist, 8

Let $A$ be a set of $n$ points in the space. From the family of all segments with endpoints in $A$, $q$ segments have been selected and colored yellow. Suppose that all yellow segments are of different length. Prove that there exists a polygonal line composed of $m$ yellow segments, where $m \geq \frac{2q}{n}$, arranged in order of increasing length.

1991 IMO, 3

Let $ S \equal{} \{1,2,3,\cdots ,280\}$. Find the smallest integer $ n$ such that each $ n$-element subset of $ S$ contains five numbers which are pairwise relatively prime.

2006 IMO Shortlist, 2

Let $P$ be a regular $2006$-gon. A diagonal is called [i]good[/i] if its endpoints divide the boundary of $P$ into two parts, each composed of an odd number of sides of $P$. The sides of $P$ are also called [i]good[/i]. Suppose $P$ has been dissected into triangles by $2003$ diagonals, no two of which have a common point in the interior of $P$. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

1978 IMO Longlists, 1

The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$

2019 European Mathematical Cup, 2

Let $n$ be a positive integer. An $n\times n$ board consisting of $n^2$ cells, each being a unit square colored either black or white, is called [i]convex[/i] if for every black colored cell, both the cell directly to the left of it and the cell directly above it are also colored black. We define the [i]beauty[/i] of a board as the number of pairs of its cells $(u,v)$ such that $u$ is black, $v$ is white, and $u$ and $v$ are in the same row or column. Determine the maximum possible beauty of a convex $n\times n$ board. [i]Proposed by Ivan Novak[/i]

2002 IMO Shortlist, 7

Among a group of 120 people, some pairs are friends. A [i]weak quartet[/i] is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets ?

2009 IMO Shortlist, 2

For any integer $n\geq 2$, let $N(n)$ be the maxima number of triples $(a_i, b_i, c_i)$, $i=1, \ldots, N(n)$, consisting of nonnegative integers $a_i$, $b_i$ and $c_i$ such that the following two conditions are satisfied: [list][*] $a_i+b_i+c_i=n$ for all $i=1, \ldots, N(n)$, [*] If $i\neq j$ then $a_i\neq a_j$, $b_i\neq b_j$ and $c_i\neq c_j$[/list] Determine $N(n)$ for all $n\geq 2$. [i]Proposed by Dan Schwarz, Romania[/i]

2017 IMO Shortlist, C2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Romania Team Selection Tests, 2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2008 Peru Iberoamerican Team Selection Test, P3

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

2008 IMO Shortlist, 1

In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2009 Germany Team Selection Test, 1

In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements. [i]Proposed by Jorge Tipe, Peru[/i]

2017 Taiwan TST Round 2, 5

Let $n \geq 3$ be a positive integer. Find the maximum number of diagonals in a regular $n$-gon one can select, so that any two of them do not intersect in the interior or they are perpendicular to each other.

2005 IMO Shortlist, 8

Suppose we have a $n$-gon. Some $n-3$ diagonals are coloured black and some other $n-3$ diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of $n$. [i]Proposed by Alexander Ivanov, Bulgaria[/i]

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1987 IMO Shortlist, 11

Find the number of partitions of the set $\{1, 2, \cdots, n\}$ into three subsets $A_1,A_2,A_3$, some of which may be empty, such that the following conditions are satisfied: $(i)$ After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity. $(ii)$ If $A_1,A_2,A_3$ are all nonempty, then in exactly one of them the minimal number is even . [i]Proposed by Poland.[/i]

2018 Thailand TST, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Peru IMO TST, 6

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1991 IMO Shortlist, 12

Let $ S \equal{} \{1,2,3,\cdots ,280\}$. Find the smallest integer $ n$ such that each $ n$-element subset of $ S$ contains five numbers which are pairwise relatively prime.

2009 Singapore Team Selection Test, 3

In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. [i]Proposed by Gerhard Woeginger, Netherlands[/i]