This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2010 Harvard-MIT Mathematics Tournament, 8

Let $f(n)=\displaystyle\sum_{k=2}^\infty \dfrac{1}{k^n\cdot k!}.$ Calculate $\displaystyle\sum_{n=2}^\infty f(n)$.

2008 Pre-Preparation Course Examination, 5

A permutation $ \pi$ is selected randomly through all $ n$-permutations. a) if \[ C_a(\pi)\equal{}\mbox{the number of cycles of length }a\mbox{ in }\pi\] then prove that $ E(C_a(\pi))\equal{}\frac1a$ b) Prove that if $ \{a_1,a_2,\dots,a_k\}\subset\{1,2,\dots,n\}$ the probability that $ \pi$ does not have any cycle with lengths $ a_1,\dots,a_k$ is at most $ \frac1{\sum_{i\equal{}1}^ka_i}$

2009 AMC 12/AHSME, 12

The fifth and eighth terms of a geometric sequence of real numbers are $ 7!$ and $ 8!$ respectively. What is the first term? $ \textbf{(A)}\ 60\qquad \textbf{(B)}\ 75\qquad \textbf{(C)}\ 120\qquad \textbf{(D)}\ 225\qquad \textbf{(E)}\ 315$

2006 Germany Team Selection Test, 2

Find all positive integers $ n$ such that there exists a unique integer $ a$ such that $ 0\leq a < n!$ with the following property: \[ n!\mid a^n \plus{} 1 \] [i]Proposed by Carlos Caicedo, Colombia[/i]

Kvant 2022, M2716

Find all pairs of natural numbers $(k, m)$ such that for any natural $n{}$ the product\[(n+m)(n+2m)\cdots(n+km)\]is divisible by $k!{}$. [i]Proposed by P. Kozhevnikov[/i]

1967 IMO Shortlist, 2

Prove that \[\frac{1}{3}n^2 + \frac{1}{2}n + \frac{1}{6} \geq (n!)^{\frac{2}{n}},\] and let $n \geq 1$ be an integer. Prove that this inequality is only possible in the case $n = 1.$

2003 BAMO, 1

An integer is a perfect number if and only if it is equal to the sum of all of its divisors except itself. For example, $28$ is a perfect number since $28 = 1 + 2 + 4 + 7 + 14$. Let $n!$ denote the product $1\cdot 2\cdot 3\cdot ...\cdot n$, where $n$ is a positive integer. An integer is a factorial if and only if it is equal to $n!$ for some positive integer $n$. For example, $24$ is a factorial number since $24 = 4! = 1\cdot 2\cdot 3\cdot 4$. Find all perfect numbers greater than $1$ that are also factorials.

2013-2014 SDML (High School), 1

Tags: factorial
What is the smallest integer $m$ such that $\frac{10!}{m}$ is a perfect square? $\text{(A) }2\qquad\text{(B) }7\qquad\text{(C) }14\qquad\text{(D) }21\qquad\text{(E) }35$

2011 AMC 12/AHSME, 22

Let $R$ be a square region and $n \ge 4$ an integer. A point $X$ in the interior of $R$ is called [i]n-ray partitional[/i] if there are $n$ rays emanating from $X$ that divide $R$ into $n$ triangles of equal area. How many points are 100-ray partitional but not 60-ray partitional? $\textbf{(A)}\ 1500 \qquad \textbf{(B)}\ 1560 \qquad \textbf{(C)}\ 2320 \qquad \textbf{(D)}\ 2480 \qquad \textbf{(E)}\ 2500$

2017 Singapore Senior Math Olympiad, 1

Let $n$ be a positive integer and $a_1,a_2,...,a_{2n}$ be $2n$ distinct integers. Given that the equation $|x-a_1| |x-a_2| ... |x-a_{2n}| =(n!)^2$ has an integer solution $x = m$, find $m$ in terms of $a_1,a_2,...,a_{2n}$