This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2014 Thailand TSTST, 1

In a triangle $ABC, AC = BC$ and $D$ is the midpoint of $AB$. Let $E$ be an arbitrary point on line $AB$ which is not $B$ or $D$. Let $O$ be the circumcenter of $\vartriangle ACE$ and $F$ the intersection of the perpendicular from $E$ to $BC$ and the perpendicular to $DO$ at $D$. Prove that the acute angle between $BC$ and $BF$ does not depend on the choice of point $E$.

2020 Federal Competition For Advanced Students, P2, 5

Let $h$ be a semicircle with diameter $AB$. Let $P$ be an arbitrary point inside the diameter $AB$. The perpendicular through $P$ on $AB$ intersects $h$ at point $C$. The line $PC$ divides the semicircular area into two parts. A circle will be inscribed in each of them that touches $AB, PC$ and $h$. The points of contact of the two circles with $AB$ are denoted by $D$ and $E$, where $D$ lies between $A$ and $P$. Prove that the size of the angle $DCE$ does not depend on the choice of $P$. (Walther Janous)