This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 65

Denmark (Mohr) - geometry, 2010.5

An equilateral triangle $ABC$ is given. With $BC$ as diameter, a semicircle is drawn outside the triangle. On the semicircle, points $D$ and $E$ are chosen such that the arc lengths $BD, DE$ and $EC$ are equal. Prove that the line segments $AD$ and $AE$ divide the side $BC$ into three equal parts. [img]https://1.bp.blogspot.com/-hQQV-Of96Ls/XzXCZjCledI/AAAAAAAAMV0/SwXa4mtEEm04onYbFGZiTc5NSpkoyvJLwCLcBGAsYHQ/s0/2010%2BMohr%2Bp5.png[/img]

1989 Chile National Olympiad, 3

In a right triangle with legs $a$, $b$ and hypotenuse $c$, draw semicircles with diameters on the sides of the triangle as indicated in the figure. The purple areas have values $X,Y$ . Calculate $X + Y$. [img]https://cdn.artofproblemsolving.com/attachments/1/a/5086dc7172516b0a986ef1af192c15eba4d6fc.png[/img]

1956 Czech and Slovak Olympiad III A, 4

Let a semicircle $AB$ be given and let $X$ be an inner point of the arc. Consider a point $Y$ on ray $XA$ such that $XY=XB$. Find the locus of all points $Y$ when $X$ moves on the arc $AB$ (excluding the endpoints).

1997 Singapore Senior Math Olympiad, 2

Figure shows a semicircle with diameter $AD$. The chords $AC$ and $BD$ meet at $P$. $Q$ is the foot of the perpendicular from $P$ to $AD$. find $\angle BCQ$ in terms of $\theta$ and $\phi$ . [img]https://cdn.artofproblemsolving.com/attachments/a/2/2781050e842b2dd01b72d246187f4ed434ff69.png[/img]

2013 Tournament of Towns, 3

Assume that $C$ is a right angle of triangle $ABC$ and $N$ is a midpoint of the semicircle, constructed on $CB$ as on diameter externally. Prove that $AN$ divides the bisector of angle $C$ in half.

1974 Bundeswettbewerb Mathematik, 3

A circle $K_1$ of radius $r_1 = 1\slash 2$ is inscribed in a semi-circle $H$ with diameter $AB$ and radius $1.$ A sequence of different circles $K_2, K_3, \ldots$ with radii $r_2, r_3, \ldots$ respectively are drawn so that for each $n\geq 1$, the circle $K_{n+1}$ is tangent to $H$, $K_n$ and $AB.$ Prove that $a_n = 1\slash r_n$ is an integer for each $n$, and that it is a perfect square for $n$ even and twice a perfect square for $n$ odd.

2009 Swedish Mathematical Competition, 5

A semicircular arc and a diameter $AB$ with a length of $2$ are given. Let $O$ be the midpoint of the diameter. On the radius perpendicular to the diameter, we select a point $P$ at the distance $d$ from the midpoint of the diameter $O$, $0 <d <1$. A line through $A$ and $P$ intersects the semicircle at point $C$. Through point $P$ we draw another line at right angle against $AC$ that intersects the semicircle at point $D$. Through point $C$ we draw a line $l_1$, parallel to $PD$ and then a line $l_2$, through $D$ parallel to $PC$. The lines $l_1$ and $l_2$ intersect at point $E$. Show that the distance between $O$ and $E$ is equal to $\sqrt{2- d^2}$

Cono Sur Shortlist - geometry, 1993.11

Let $\Gamma$ be a semicircle with center $O$ and diameter $AB$. $D$ is the midpoint of arc $AB$. On the ray $OD$, we take $E$ such that $OE = BD$. $BE$ intersects the semicircle at $F$ and $ P$ is the point on $AB$ such that $FP$ is perpendicular to $AB$. Prove that $BP=\frac13 AB$.

2008 Dutch IMO TST, 5

Let $\vartriangle ABC$ be a right triangle with $\angle B = 90^o$ and $|AB| > |BC|$, and let $\Gamma$ be the semicircle with diameter $AB$ that lies on the same side as $C$. Let $P$ be a point on $\Gamma$ such that $|BP| = |BC|$ and let $Q$ be on $AB$ such that $|AP| = |AQ|$. Prove that the midpoint of $CQ$ lies on $\Gamma$.

2017 Estonia Team Selection Test, 10

Let $ABC$ be a triangle with $AB = \frac{AC}{2 }+ BC$. Consider the two semicircles outside the triangle with diameters $AB$ and $BC$. Let $X$ be the orthogonal projection of $A$ onto the common tangent line of those semicircles. Find $\angle CAX$.

2011 Sharygin Geometry Olympiad, 1

Altitudes $AA_1$ and $BB_1$ of triangle ABC meet in point $H$. Line $CH$ meets the semicircle with diameter $AB$, passing through $A_1, B_1$, in point $D$. Segments $AD$ and $BB_1$ meet in point $M$, segments $BD$ and $AA_1$ meet in point $N$. Prove that the circumcircles of triangles $B_1DM$ and $A_1DN$ touch.

2021 Iranian Geometry Olympiad, 3

As shown in the following figure, a heart is a shape consist of three semicircles with diameters $AB$, $BC$ and $AC$ such that $B$ is midpoint of the segment $AC$. A heart $\omega$ is given. Call a pair $(P, P')$ bisector if $P$ and $P'$ lie on $\omega$ and bisect its perimeter. Let $(P, P')$ and $(Q,Q')$ be bisector pairs. Tangents at points $P, P', Q$, and $Q'$ to $\omega$ construct a convex quadrilateral $XYZT$. If the quadrilateral $XYZT$ is inscribed in a circle, find the angle between lines $PP'$ and $QQ'$. [img]https://cdn.artofproblemsolving.com/attachments/3/c/8216889594bbb504372d8cddfac73b9f56e74c.png[/img] [i]Proposed by Mahdi Etesamifard - Iran[/i]

1939 Eotvos Mathematical Competition, 3

$ABC$ is an acute triangle. Three semicircles are constructed outwardly on the sides $BC$, $CA$ and $AB$ respectively. Construct points $A'$ , $B'$ and $C' $ on these semicìrcles respectively so that $AB' = AC'$, $BC' = BA'$ and $CA'= CB'$.

Estonia Open Senior - geometry, 1996.1.4

A unit square has a circle of radius $r$ with center at it's midpoint. The four quarter circles are centered on the vertices of the square and are tangent to the central circle (see figure). Find the maximum and minimum possible value of the area of the striped figure in the figure and the corresponding values of $r$ such these, the maximum and minimum are achieved. [img]https://2.bp.blogspot.com/-DOT4_B5Mx-8/XnmsTlWYfyI/AAAAAAAALgs/TVYkrhqHYGAeG8eFuqFxGDCTnogVbQFUwCK4BGAYYCw/s400/96%2Bestonia%2Bopen%2Bs1.4.png[/img]

2023 Yasinsky Geometry Olympiad, 4

Pick a point $C$ on a semicircle with diameter $AB$. Let $P$ and $Q$ be two points on segment $AB$ such that $AP= AC$ and $BQ= BC$. The point $O$ is the center of the circumscribed circle of triangle $CPQ$ and point $H$ is the orthocenter of triangle $CPQ$ . Prove that for all posible locations of point $C$, the line $OH$ is passing through a fixed point. (Mykhailo Sydorenko)

Durer Math Competition CD Finals - geometry, 2021.D3

Given a semicirle with center $O$ an arbitrary inner point of the diameter divides it into two segments. Let there be semicircles above the two segments as visible in the below figure. The line $\ell$ passing through the point $A$ intersects the semicircles in $4$ points: $B, C, D$ and $E$. Show that the segments $BC$ and $DE$ have the same length. [img]https://cdn.artofproblemsolving.com/attachments/1/4/86a369d54fef7e25a51fea6481c0b5e7dd45ff.png[/img]

2011 Saudi Arabia Pre-TST, 4.1

On a semicircle of diameter $AB$ and center $C$, consider vari­able points $M$ and $N$ such that $MC \perp NC$. The circumcircle of triangle $MNC$ intersects $AB$ for the second time at $P$. Prove that $\frac{|PM-PN|}{PC}$ constant and find its value.

2010 Saudi Arabia Pre-TST, 2.4

Let $AMNB$ be a quadrilateral inscribed in a semicircle of diameter $AB = x$. Denote $AM = a$, $MN = b$, $NB = c$. Prove that $x^3- (a^2 + b^2 + c^2)x -2abc = 0$.

2018 Greece JBMO TST, 2

Let $ABC$ be an acute triangle with $AB<AC<BC, c$ it's circumscribed circle and $D,E$ be the midpoints of $AB,AC$ respectively. With diameters the sides $AB,AC$, we draw semicircles, outer of the triangle, which are intersected by line $D$ at points $M$ and $N$ respectively. Lines $MB$ and $NC$ intersect the circumscribed circle at points $T,S$ respectively. Lines $MB$ and $NC$ intersect at point $H$. Prove that: a) point $H$ lies on the circumcircle of triangle $AMN$ b) lines $AH$ and $TS$ are perpedicular and their intersection, let it be $Z$, is the circimcenter of triangle $AMN$

Novosibirsk Oral Geo Oly IX, 2020.1

Two semicircles touch the side of the rectangle, each other and the segment drawn in it as in the figure. What part of the whole rectangle is filled? [img]https://cdn.artofproblemsolving.com/attachments/3/e/70ca8b80240a282553294a58cb3ed807d016be.png[/img]

2013 BMT Spring, 2

S-Corporation designs its logo by linking together $4$ semicircles along the diameter of a unit circle. Find the perimeter of the shaded portion of the logo. [img]https://cdn.artofproblemsolving.com/attachments/8/6/f0eabd46f5f3a5806d49012b2f871a453b9e7f.png[/img]

1998 Chile National Olympiad, 2

Given a semicircle of diameter $ AB $, with $ AB = 2r $, be $ CD $ a variable string, but of fixed length $ c $. Let $ E $ be the intersection point of lines $ AC $ and $ BD $, and let $ F $ be the intersection point of lines $ AD $ and $ BC $. a) Prove that the lines $ EF $ and $ AB $ are perpendicular. b) Determine the locus of the point $ E $. c) Prove that $ EF $ has a constant measure, and determine it based on $ c $ and $ r $.

2008 Postal Coaching, 5

Let $\omega$ be the semicircle on diameter $AB$. A line parallel to $AB$ intersects $\omega$ at $C$ and $D$ so that $B$ and $C$ lie on opposite sides of $AD$. The line through $C$ parallel to $AD$ meets $\omega$ again in $E$. Lines $BE$ and $CD$ meet in $F$ and the line through $F$ parallel to $AD$ meets $AB$ in $P$. Prove that $PC$ is tangent to $\omega$.

2008 Danube Mathematical Competition, 3

On a semicircle centred at $O$ and with radius $1$ choose the respective points $A_1,A_2,...,A_{2n}$ , for $n \in N^*$. The lenght of the projection of the vector $\overrightarrow {u}=\overrightarrow{OA_1} +\overrightarrow{OA_2}+...+\overrightarrow{OA_{2n}}$ on the diameter is an odd integer. Show that the projection of that vector on the diameter is at least $1$.

1993 ITAMO, 1

Let be given points $A,B,C$ on a line, with $C$ between $A$ and $B$. Three semicircles with diameters $AC,BC,AB$ are drawn on the same side of line $ABC$. The perpendicular to $AB$ at $C$ meets the circle with diameter $AB$ at $H$. Given that $CH =\sqrt2$, compute the area of the region bounded by the three semicircles.