Found problems: 65
2021 Iranian Geometry Olympiad, 3
As shown in the following figure, a heart is a shape consist of three semicircles with diameters $AB$, $BC$ and $AC$ such that $B$ is midpoint of the segment $AC$. A heart $\omega$ is given. Call a pair $(P, P')$ bisector if $P$ and $P'$ lie on $\omega$ and bisect its perimeter. Let $(P, P')$ and $(Q,Q')$ be bisector pairs. Tangents at points $P, P', Q$, and $Q'$ to $\omega$ construct a convex quadrilateral $XYZT$. If the quadrilateral $XYZT$ is inscribed in a circle, find the angle between lines $PP'$ and $QQ'$.
[img]https://cdn.artofproblemsolving.com/attachments/3/c/8216889594bbb504372d8cddfac73b9f56e74c.png[/img]
[i]Proposed by Mahdi Etesamifard - Iran[/i]
1997 Bundeswettbewerb Mathematik, 3
A semicircle with diameter $AB = 2r$ is divided into two sectors by an arbitrary radius. To each of the sectors a circle is inscribed. These two circles touch A$B$ at $S$ and $T$. Show that $ST \ge 2r(\sqrt{2}-1)$.
2016 Bosnia And Herzegovina - Regional Olympiad, 3
Let $AB$ be a diameter of semicircle $h$. On this semicircle there is point $C$, distinct from points $A$ and $B$. Foot of perpendicular from point $C$ to side $AB$ is point $D$. Circle $k$ is outside the triangle $ADC$ and at the same time touches semicircle $h$ and sides $AB$ and $CD$. Touching point of $k$ with side $AB$ is point $E$, with semicircle $h$ is point $T$ and with side $CD$ is point $S$
$a)$ Prove that points $A$, $S$ and $T$ are collinear
$b)$ Prove that $AC=AE$
2022 Austrian MO Beginners' Competition, 3
A semicircle is erected over the segment $AB$ with center $M$. Let $P$ be one point different from $A$ and $B$ on the semicircle and $Q$ the midpoint of the arc of the circle $AP$. The point of intersection of the straight line $BP$ with the parallel to $P Q$ through $M$ is $S$. Prove that $PM = PS$ holds.
[i](Karl Czakler)[/i]
1998 Estonia National Olympiad, 2
Let $C$ and $D$ be two distinct points on a semicircle of diameter $AB$. Let $E$ be the intersection of $AC$ and $BD$, $F$ be the intersection of $AD$ and $BC$ and $X, Y$, and $Z$ are the midpoints of $AB, CD$, and $EF$, respectively. Prove that the points $X, Y,$ and $Z$ are collinear.
1998 Chile National Olympiad, 2
Given a semicircle of diameter $ AB $, with $ AB = 2r $, be $ CD $ a variable string, but of fixed length $ c $. Let $ E $ be the intersection point of lines $ AC $ and $ BD $, and let $ F $ be the intersection point of lines $ AD $ and $ BC $.
a) Prove that the lines $ EF $ and $ AB $ are perpendicular.
b) Determine the locus of the point $ E $.
c) Prove that $ EF $ has a constant measure, and determine it based on $ c $ and $ r $.
2013 Denmark MO - Mohr Contest, 2
The figure shows a rectangle, its circumscribed circle and four semicircles, which have the rectangle’s sides as diameters. Prove that the combined area of the four dark gray crescentshaped regions is equal to the area of the light gray rectangle.
[img]https://1.bp.blogspot.com/-gojv6KfBC9I/XzT9ZMKrIeI/AAAAAAAAMVU/NB-vUldjULI7jvqiFWmBC_Sd8QFtwrc7wCLcBGAsYHQ/s0/2013%2BMohr%2Bp3.png[/img]
Kyiv City MO Seniors 2003+ geometry, 2020.10.5.1
Let $\Gamma$ be a semicircle with diameter $AB$. On this diameter is selected a point $C$, and on the semicircle are selected points $D$ and $E$ so that $E$ lies between $B$ and $D$. It turned out that $\angle ACD = \angle ECB$. The intersection point of the tangents to $\Gamma$ at points $D$ and $E$ is denoted by $F$. Prove that $\angle EFD=\angle ACD+ \angle ECB$.
1991 Greece Junior Math Olympiad, 2
Given a semicircle of diameter $AB$ and center $O$. Let $CD$ be the chord of the semicircle tangent to two circles of diameters $AO$ and $OB$. If $CD=120$ cm,, caclulate area of the semicircle.
1979 Poland - Second Round, 6
On the side $ \overline{DC} $ of the rectangle $ ABCD $ in which $ \frac{AB}{AD} = \sqrt{2} $ a semicircle is built externally. Any point $ M $ of the semicircle is connected by segments with $ A $ and $ B $ to obtain points $ K $ and $ L $ on $ \overline{DC} $, respectively. Prove that $ DL^2 + KC^2 = AB^2 $.
1956 Czech and Slovak Olympiad III A, 4
Let a semicircle $AB$ be given and let $X$ be an inner point of the arc. Consider a point $Y$ on ray $XA$ such that $XY=XB$. Find the locus of all points $Y$ when $X$ moves on the arc $AB$ (excluding the endpoints).
2010 Denmark MO - Mohr Contest, 5
An equilateral triangle $ABC$ is given. With $BC$ as diameter, a semicircle is drawn outside the triangle. On the semicircle, points $D$ and $E$ are chosen such that the arc lengths $BD, DE$ and $EC$ are equal. Prove that the line segments $AD$ and $AE$ divide the side $BC$ into three equal parts.
[img]https://1.bp.blogspot.com/-hQQV-Of96Ls/XzXCZjCledI/AAAAAAAAMV0/SwXa4mtEEm04onYbFGZiTc5NSpkoyvJLwCLcBGAsYHQ/s0/2010%2BMohr%2Bp5.png[/img]
2011 Saudi Arabia Pre-TST, 4.1
On a semicircle of diameter $AB$ and center $C$, consider variable points $M$ and $N$ such that $MC \perp NC$. The circumcircle of triangle $MNC$ intersects $AB$ for the second time at $P$. Prove that $\frac{|PM-PN|}{PC}$ constant and find its value.
2013 BMT Spring, 2
S-Corporation designs its logo by linking together $4$ semicircles along the diameter of a unit circle. Find the perimeter of the shaded portion of the logo.
[img]https://cdn.artofproblemsolving.com/attachments/8/6/f0eabd46f5f3a5806d49012b2f871a453b9e7f.png[/img]
2023 Yasinsky Geometry Olympiad, 4
Pick a point $C$ on a semicircle with diameter $AB$. Let $P$ and $Q$ be two points on segment $AB$ such that $AP= AC$ and $BQ= BC$. The point $O$ is the center of the circumscribed circle of triangle $CPQ$ and point $H$ is the orthocenter of triangle $CPQ$ . Prove that for all posible locations of point $C$, the line $OH$ is passing through a fixed point.
(Mykhailo Sydorenko)
2024 Austrian MO National Competition, 2
Let $h$ be a semicircle with diameter $AB$. The two circles $k_1$ and $k_2$, $k_1 \ne k_2$, touch the segment $AB$ at the points $C$ and $D$, respectively, and the semicircle $h$ fom the inside at the points $E$ and $F$, respectively. Prove that the four points $C$, $D$, $E$ and $F$ lie on a circle.
[i](Walther Janous)[/i]
2014 Costa Rica - Final Round, 4
Consider the isosceles triangle $ABC$ inscribed in the semicircle of radius $ r$. If the $\vartriangle BCD$ and $\vartriangle CAE$ are equilateral, determine the altitude of $\vartriangle DEC$ on the side $DE$ in terms of $ r$.
[img]https://cdn.artofproblemsolving.com/attachments/6/3/772ff9a1fd91e9fa7a7e45ef788eec7a1ba48e.png[/img]
1993 ITAMO, 1
Let be given points $A,B,C$ on a line, with $C$ between $A$ and $B$. Three semicircles with diameters $AC,BC,AB$ are drawn on the same side of line $ABC$. The perpendicular to $AB$ at $C$ meets the circle with diameter $AB$ at $H$. Given that $CH =\sqrt2$, compute the area of the region bounded by the three semicircles.
2010 Saudi Arabia Pre-TST, 2.4
Let $AMNB$ be a quadrilateral inscribed in a semicircle of diameter $AB = x$. Denote $AM = a$, $MN = b$, $NB = c$. Prove that $x^3- (a^2 + b^2 + c^2)x -2abc = 0$.
2009 Swedish Mathematical Competition, 5
A semicircular arc and a diameter $AB$ with a length of $2$ are given. Let $O$ be the midpoint of the diameter. On the radius perpendicular to the diameter, we select a point $P$ at the distance $d$ from the midpoint of the diameter $O$, $0 <d <1$. A line through $A$ and $P$ intersects the semicircle at point $C$. Through point $P$ we draw another line at right angle against $AC$ that intersects the semicircle at point $D$. Through point $C$ we draw a line $l_1$, parallel to $PD$ and then a line $l_2$, through $D$ parallel to $PC$. The lines $l_1$ and $l_2$ intersect at point $E$. Show that the distance between $O$ and $E$ is equal to $\sqrt{2- d^2}$
2023 Puerto Rico Team Selection Test, 2
Consider a semicircle with center $M$ and diameter $AB$. Let $P$ be a point in the semicircle, different from $A$ and $B$, and let $Q$ be the midpoint of the arc $AP$. The line parallel to $QP$ through $M$ intersects $PB$ at the point $S$. Prove that the triangle $PMS$ is isosceles.
2003 Singapore Team Selection Test, 2
Let $M$ be a point on the diameter $AB$ of a semicircle $\Gamma$. The perpendicular at $M$ meets the semicircle $\Gamma$ at $P$. A circle inside $\Gamma$. touches $\Gamma$. and is tangent to $PM$ at $Q$ and $AM$ at $R$. Prove that $P B = RB$.
2019 Balkan MO Shortlist, G9
Given semicircle $(c)$ with diameter $AB$ and center $O$. On the $(c)$ we take point $C$ such that the tangent at the $C$ intersects the line $AB$ at the point $E$. The perpendicular line from $C$ to $AB$ intersects the diameter $AB$ at the point $D$. On the $(c)$ we get the points $H,Z$ such that $CD = CH = CZ$. The line $HZ$ intersects the lines $CO,CD,AB$ at the points $S, I, K$ respectively and the parallel line from $I$ to the line $AB$ intersects the lines $CO,CK$ at the points $L,M$ respectively. We consider the circumcircle $(k)$ of the triangle $LMD$, which intersects again the lines $AB, CK$ at the points $P, U$ respectively. Let $(e_1), (e_2), (e_3)$ be the tangents of the $(k)$ at the points $L, M, P$ respectively and $R = (e_1) \cap (e_2)$, $X = (e_2) \cap (e_3)$, $T = (e_1) \cap (e_3)$. Prove that if $Q$ is the center of $(k)$, then the lines $RD, TU, XS$ pass through the same point, which lies in the line $IQ$.
Denmark (Mohr) - geometry, 2010.5
An equilateral triangle $ABC$ is given. With $BC$ as diameter, a semicircle is drawn outside the triangle. On the semicircle, points $D$ and $E$ are chosen such that the arc lengths $BD, DE$ and $EC$ are equal. Prove that the line segments $AD$ and $AE$ divide the side $BC$ into three equal parts.
[img]https://1.bp.blogspot.com/-hQQV-Of96Ls/XzXCZjCledI/AAAAAAAAMV0/SwXa4mtEEm04onYbFGZiTc5NSpkoyvJLwCLcBGAsYHQ/s0/2010%2BMohr%2Bp5.png[/img]
Novosibirsk Oral Geo Oly IX, 2019.1
The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$.
[img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]