This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2007 Princeton University Math Competition, 1

If $a, b, c$ are real numbers such that $a+b+c=6$ and $ab+bc+ca = 9$, find the sum of all possible values of the expression $\lfloor a \rfloor + \lfloor b \rfloor + \lfloor c \rfloor$.

1975 IMO Shortlist, 3

Find the integer represented by $\left[ \sum_{n=1}^{10^9} n^{-2/3} \right] $. Here $[x]$ denotes the greatest integer less than or equal to $x.$

2006 JBMO ShortLists, 6

Prove that for every composite number $ n>4$, numbers $ kn$ divides $ (n\minus{}1)!$ for every integer $ k$ such that $ 1\le k\le \lfloor \sqrt{n\minus{}1} \rfloor$.

2007 Iran MO (3rd Round), 8

In this question you must make all numbers of a clock, each with using 2, exactly 3 times and Mathematical symbols. You are not allowed to use English alphabets and words like $ \sin$ or $ \lim$ or $ a,b$ and no other digits. [img]http://i2.tinypic.com/5x73dza.png[/img]

2007 China Team Selection Test, 2

A rational number $ x$ is called [i]good[/i] if it satisfies: $ x\equal{}\frac{p}{q}>1$ with $ p$, $ q$ being positive integers, $ \gcd (p,q)\equal{}1$ and there exists constant numbers $ \alpha$, $ N$ such that for any integer $ n\geq N$, \[ |\{x^n\}\minus{}\alpha|\leq\dfrac{1}{2(p\plus{}q)}\] Find all the good numbers.

2011 National Olympiad First Round, 31

For the integer numbers $i,j,k$ satisfying the condtion $i^2+j^2+k^2=2011$, what is the largest value of $i+j+k$? $\textbf{(A)}\ 71 \qquad\textbf{(B)}\ 73 \qquad\textbf{(C)}\ 74 \qquad\textbf{(D)}\ 76 \qquad\textbf{(E)}\ 77$

1989 IMO Longlists, 7

For every sequence $ (x_1, x_2, \ldots, x_n)$ of non-zero natural prime numbers, $ \{1, 2, \ldots, n\}$ arranged in any order, denote by $ f(s)$ the sum of absolute values of the differences between two consecutive members of $ s.$ Find the maximum value of $ f(s)$ where $ s$ runs through the set of all such sequences, i.e. for all sequences $ s$ with the given properties.

2016 Turkmenistan Regional Math Olympiad, Problem 1

If $a,b,x,y$ are real numbers then find all solutions of $a,b$ such that $\left \lfloor ax+by \right \rfloor + \left \lfloor bx+ay \right \rfloor = (a+b) \left \lfloor x+y \right \rfloor$

2015 India IMO Training Camp, 3

Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) [i]Proposed by Hong Kong[/i]

2013 Harvard-MIT Mathematics Tournament, 6

Find the number of integers $n$ such that \[1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.\]

2010 Bulgaria National Olympiad, 2

Let $f: \mathbb N \to \mathbb N$ be a function such that $f(1)=1$ and \[f(n)=n - f(f(n-1)), \quad \forall n \geq 2.\] Prove that $f(n+f(n))=n $ for each positive integer $n.$

2008 Croatia Team Selection Test, 4

Let $ S$ be the set of all odd positive integers less than $ 30m$ which are not multiples of $ 5$, where $ m$ is a given positive integer. Find the smallest positive integer $ k$ such that each $ k$-element subset of $ S$ contains two distinct numbers, one of which divides the other.

2013 NIMO Problems, 3

Let $a_1, a_2, \dots, a_{1000}$ be positive integers whose sum is $S$. If $a_n!$ divides $n$ for each $n = 1, 2, \dots, 1000$, compute the maximum possible value of $S$. [i]Proposed by Michael Ren[/i]

2006 IMO Shortlist, 3

We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by \[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right), \] where $\lfloor x\rfloor$ denotes the integer part of $x$. [b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often. [b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often. [i]Proposed by Johan Meyer, South Africa[/i]

2010 Contests, 3

For any integer $n\ge 2$, let $N(n)$ be the maximum number of triples $(a_j,b_j,c_j),j=1,2,3,\cdots ,N(n),$ consisting of non-negative integers $a_j,b_j,c_j$ (not necessarily distinct) such that the following two conditions are satisfied: (a) $a_j+b_j+c_j=n,$ for all $j=1,2,3,\cdots N(n)$; (b) $j\neq k$, then $a_j\neq a_k$, $b_j\neq b_k$ and $c_j\neq c_k$. Determine $N(n)$ for all $n\ge 2$.

2015 Peru MO (ONEM), 3

Let $a_1, a_2, . . . , a_n$ be positive integers, with $n \ge 2$, such that $$ \lfloor \sqrt{a_1 \cdot a_2\cdot\cdot\cdot a_n} \rfloor = \lfloor \sqrt{a_1} \rfloor \cdot \lfloor \sqrt{a_2} \rfloor \cdot\cdot\cdot \lfloor \sqrt{a_n} \rfloor.$$ Prove that at least $n - 1$ of these numbers are perfect squares. Clarification: Given a real number $x$, $\lfloor x\rfloor$ denotes the largest integer that is less than or equal to $x$. For example $\lfloor \sqrt2\rfloor$ and $\lfloor 3\rfloor =3$.

2009 Tournament Of Towns, 4

Denote by $[n]!$ the product $ 1 \cdot 11 \cdot 111\cdot ... \cdot \underbrace{111...1}_{\text{n ones}}$.($n$ factors in total). Prove that $[n + m]!$ is divisible by $ [n]! \times [m]!$ [i](8 points)[/i]

2012 Thailand Mathematical Olympiad, 3

Let $m, n > 1$ be coprime odd integers. Show that $$\big \lfloor \frac{m^{\phi (n)+1} + n^{\phi (m)+1}}{mn} \rfloor$$ is an even integer, where $\phi$ is Euler’s totient function.

2006 MOP Homework, 4

Find all pairs $(a,b)$ of positive real numbers such that $\lfloor a \lfloor bn \rfloor \rfloor =n - 1$ for all positive integers $n$.

Oliforum Contest IV 2013, 7

For every positive integer $n$, define the number of non-empty subsets $\mathcal N\subseteq \{1,\ldots ,n\}$ such that $\gcd(n\in\mathcal N)=1$. Show that $f(n)$ is a perfect square if and only if $n=1$.

1990 Spain Mathematical Olympiad, 3

Prove that $ \lfloor{(4+\sqrt11)^{n}}\rfloor $ is odd for every natural number n.

2010 Switzerland - Final Round, 8

In a village with at least one inhabitant, there are several associations. Each inhabitant is a member of at least $ k$ associations, and any two associations have at most one common member. Prove that at least $ k$ associations have the same number of members.

2024 Spain Mathematical Olympiad, 6

Let $a$, $b$ and $n$ be positive integers, satisfying that $bn$ divides $an-a+1$. Let $\alpha=a/b$. Prove that, when the numbers $\lfloor\alpha\rfloor,\lfloor2\alpha\rfloor,\dots,\lfloor(n-1)\alpha\rfloor$ are divided by $n$, the residues are $1,2,\dots,n-1$, in some order.

2006 AMC 12/AHSME, 22

Suppose $ a, b,$ and $ c$ are positive integers with $ a \plus{} b \plus{} c \equal{} 2006$, and $ a!b!c! \equal{} m\cdot10^n$, where $ m$ and $ n$ are integers and $ m$ is not divisible by 10. What is the smallest possible value of $ n$? $ \textbf{(A) } 489 \qquad \textbf{(B) } 492 \qquad \textbf{(C) } 495 \qquad \textbf{(D) } 498 \qquad \textbf{(E) } 501$

1992 IMO Longlists, 75

A sequence $\{an\}$ of positive integers is defined by \[a_n=\left[ n +\sqrt n + \frac 12 \right] , \qquad \forall n \in \mathbb N\] Determine the positive integers that occur in the sequence.