This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2007 Indonesia TST, 3

For each real number $ x$< let $ \lfloor x \rfloor$ be the integer satisfying $ \lfloor x \rfloor \le x < \lfloor x \rfloor \plus{}1$ and let $ \{x\}\equal{}x\minus{}\lfloor x \rfloor$. Let $ c$ be a real number such that \[ \{n\sqrt{3}\}>\dfrac{c}{n\sqrt{3}}\] for all positive integers $ n$. Prove that $ c \le 1$.

2014 Online Math Open Problems, 18

We select a real number $\alpha$ uniformly and at random from the interval $(0,500)$. Define \[ S = \frac{1}{\alpha} \sum_{m=1}^{1000} \sum_{n=m}^{1000} \left\lfloor \frac{m+\alpha}{n} \right\rfloor. \] Let $p$ denote the probability that $S \ge 1200$. Compute $1000p$. [i]Proposed by Evan Chen[/i]

1984 AMC 12/AHSME, 9

The number of digits in $4^{16} 5^{25}$ (when written in the usual base 10 form) is A. 31 B. 30 C. 29 D. 28 E. 27

2010 Laurențiu Panaitopol, Tulcea, 2

Let be a nonnegative integer $ n $ such that $ \sqrt n $ is not integer. Show that the function $$ f:\{ a+b\sqrt n | a,b\in\{ 0\}\cup\mathbb{N} , a^2-nb^2=1 \}\longrightarrow\{ 0\}\cup\mathbb{N} , f(x) =\lfloor x \rfloor $$ is injective and non-surjective.

PEN I Problems, 16

Prove or disprove that there exists a positive real number $u$ such that $\lfloor u^n \rfloor -n$ is an even integer for all positive integer $n$.

2013 China National Olympiad, 1

Let $n \geqslant 2$ be an integer. There are $n$ finite sets ${A_1},{A_2},\ldots,{A_n}$ which satisfy the condition \[\left| {{A_i}\Delta {A_j}} \right| = \left| {i - j} \right| \quad \forall i,j \in \left\{ {1,2,...,n} \right\}.\] Find the minimum of $\sum\limits_{i = 1}^n {\left| {{A_i}} \right|} $.

2012 Brazil National Olympiad, 4

There exists some integers $n,a_1,a_2,\ldots,a_{2012}$ such that \[ n^2=\sum_{1 \leq i \leq 2012}{{a_i}^{p_i}} \] where $p_i$ is the i-th prime ($p_1=2,p_2=3,p_3=5,p_4=7,\ldots$) and $a_i>1$ for all $i$?

PEN A Problems, 36

Let $n$ and $q$ be integers with $n \ge 5$, $2 \le q \le n$. Prove that $q-1$ divides $\left\lfloor \frac{(n-1)!}{q}\right\rfloor $.

1996 Vietnam Team Selection Test, 2

For each positive integer $n$, let $f(n)$ be the maximal natural number such that: $2^{f(n)}$ divides $\sum^{\left\lfloor \frac{n - 1}{2}\right\rfloor}_{i=0} \binom{n}{2 \cdot i + 1} 3^i$. Find all $n$ such that $f(n) = 1996.$ [hide="old version"]For each positive integer $n$, let $f(n)$ be the maximal natural number such that: $2^{f(n)}$ divides $\sum^{n + 1/2}_{i=1} \binom{2 \cdot i + 1}{n}$. Find all $n$ such that $f(n) = 1996.$[/hide]

2014 Olympic Revenge, 2

$a)$ Let $n$ a positive integer. Prove that $gcd(n, \lfloor n\sqrt{2} \rfloor)<\sqrt[4]{8}\sqrt{n}$. $b)$ Prove that there are infinitely many positive integers $n$ such that $gcd(n, \lfloor n\sqrt{2} \rfloor)>\sqrt[4]{7.99}\sqrt{n}$.

2019 Centers of Excellency of Suceava, 2

For a natural number $ n\ge 2, $ calculate the integer part of $ \sqrt[n]{1+n}-\sqrt {2/n} . $ [i]Dan Nedeianu[/i]

1998 Greece National Olympiad, 4

Let a function $g:\mathbb{N}_0\to\mathbb{N}_0$ satisfy $g(0)=0$ and $g(n)=n-g(g(n-1))$ for all $n\ge 1$. Prove that: a) $g(k)\ge g(k-1)$ for any positive integer $k$. b) There is no $k$ such that $g(k-1)=g(k)=g(k+1)$.

2007 Princeton University Math Competition, 6

If $a, b, c$ are real numbers such that $a+b+c=6$ and $ab+bc+ca = 9$, find the sum of all possible values of the expression $\lfloor a \rfloor + \lfloor b \rfloor + \lfloor c \rfloor$.

2008 Germany Team Selection Test, 1

Show that there is a digit unequal to 2 in the decimal represesentation of $ \sqrt [3]{3}$ between the $ 1000000$-th und $ 3141592$-th position after decimal point.

2021 Bangladeshi National Mathematical Olympiad, 3

Let $r$ be a positive real number. Denote by $[r]$ the integer part of $r$ and by $\{r\}$ the fractional part of $r$. For example, if $r=32.86$, then $\{r\}=0.86$ and $[r]=32$. What is the sum of all positive numbers $r$ satisfying $25\{r\}+[r]=125$?

2011 China Team Selection Test, 2

Let $a_1,a_2,\ldots,a_n,\ldots$ be any permutation of all positive integers. Prove that there exist infinitely many positive integers $i$ such that $\gcd(a_i,a_{i+1})\leq \frac{3}{4} i$.

2013 Hanoi Open Mathematics Competitions, 3

The largest integer not exceeding $[(n+1)a]-[na]$ where $n$ is a natural number, $a=\frac{\sqrt{2013}}{\sqrt{2014}}$ is: (A): $1$, (B): $2$, (C): $3$, (D): $4$, (E) None of the above.

2012 Balkan MO Shortlist, C1

Let $n$ be a positive integer. Let $P_n=\{2^n,2^{n-1}\cdot 3, 2^{n-2}\cdot 3^2, \dots, 3^n \}.$ For each subset $X$ of $P_n$, we write $S_X$ for the sum of all elements of $X$, with the convention that $S_{\emptyset}=0$ where $\emptyset$ is the empty set. Suppose that $y$ is a real number with $0 \leq y \leq 3^{n+1}-2^{n+1}.$ Prove that there is a subset $Y$ of $P_n$ such that $0 \leq y-S_Y < 2^n$

2005 Slovenia National Olympiad, Problem 1

Evaluate the sum $\left\lfloor\log_21\right\rfloor+\left\lfloor\log_22\right\rfloor+\left\lfloor\log_23\right\rfloor+\ldots+\left\lfloor\log_2256\right\rfloor$.

2010 Contests, 3

There are $ n$ websites $ 1,2,\ldots,n$ ($ n \geq 2$). If there is a link from website $ i$ to $ j$, we can use this link so we can move website $ i$ to $ j$. For all $ i \in \left\{1,2,\ldots,n - 1 \right\}$, there is a link from website $ i$ to $ i+1$. Prove that we can add less or equal than $ 3(n - 1)\log_{2}(\log_{2} n)$ links so that for all integers $ 1 \leq i < j \leq n$, starting with website $ i$, and using at most three links to website $ j$. (If we use a link, website's number should increase. For example, No.7 to 4 is impossible). Sorry for my bad English.

1996 IMO Shortlist, 4

Find all positive integers $ a$ and $ b$ for which \[ \left \lfloor \frac{a^2}{b} \right \rfloor \plus{} \left \lfloor \frac{b^2}{a} \right \rfloor \equal{} \left \lfloor \frac{a^2 \plus{} b^2}{ab} \right \rfloor \plus{} ab.\]

2008 Regional Competition For Advanced Students, 4

For every positive integer $ n$ let \[ a_n\equal{}\sum_{k\equal{}n}^{2n}\frac{(2k\plus{}1)^n}{k}\] Show that there exists no $ n$, for which $ a_n$ is a non-negative integer.

2014-2015 SDML (High School), 15

Find the sum of all $\left\lfloor x\right\rfloor$ such that $x^2-15\left\lfloor x\right\rfloor+36=0$. $\text{(A) }15\qquad\text{(B) }26\qquad\text{(C) }45\qquad\text{(D) }49\qquad\text{(E) }75$

2007 AMC 12/AHSME, 24

For each integer $ n > 1,$ let $ F(n)$ be the number of solutions of the equation $ \sin x \equal{} \sin nx$ on the interval $ [0,\pi].$ What is $ \sum_{n \equal{} 2}^{2007}F(n)?$ $ \textbf{(A)}\ 2,014,524 \qquad \textbf{(B)}\ 2,015,028 \qquad \textbf{(C)}\ 2,015,033 \qquad \textbf{(D)}\ 2,016,532 \qquad \textbf{(E)}\ 2,017,033$

2008 Bosnia And Herzegovina - Regional Olympiad, 4

$ n$ points (no three being collinear) are given in a plane. Some points are connected and they form $ k$ segments. If no three of these segments form triangle ( equiv. there are no three points, such that each two of them are connected) prove that $ k \leq \left \lfloor \frac {n^{2}}{4}\right\rfloor$