This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1993 Moldova Team Selection Test, 3

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function defined as the maximum of a finite number of functions $g:\mathbb{R}\rightarrow\mathbb{R}$ of the form $g(x)=C\cdot10^{-|x-d|}$ (with different values of parameters $d{}$ and $C>0$). For real numbers $a<b$ we have $f(a)=f(b)$. Prove that on the segment $[a;b]$ the sum of legnths of segments on which $f$ is increasing is equal to the sum of legnths of segments on which $f$ is decreasing.

1995 Abels Math Contest (Norwegian MO), 1a

Tags: function , algebra
Let a function $f$ satisfy $f(1) = 1$ and $f(1)+ f(2)+...+ f(n) = n^2f(n)$ for all $n \in N$. Determine $f(1995)$.

2003 SNSB Admission, 6

Let be a function $ \xi:\mathbb{R}\to\mathbb{R} $ of class $ C^{\infty } $ such that $ \left| \frac{d^n\xi }{dx^n} \left( x_0 \right) \right|\le 1=\frac{d\xi}{dx}(0) , $ for any real numbers $ x_0, $ and all natural numbers $ n, $ and let be the function $ h:\mathbb{C}\longrightarrow\mathbb{C} , h(z)=1+\sum_{n\in\mathbb{N}} \left(\frac{z^n}{n!}\cdot\frac{d^n\xi }{dx^n} \left( 0 \right)\right) . $ [b]a)[/b] Show that $ h $ is well-defined and analytic. [b]b)[/b] Prove that $ h\bigg|_{\mathbb{R}} =\xi\bigg|_{\mathbb{R}} . $ [b]c)[/b] Demonstrate that $$ \frac{d}{dt}\left( \frac{\xi }{\cos} \right)\left( t_0 \right) =4\sum_{p\in\mathbb{Z}}\frac{(-1)^p\xi\left( \frac{(1+2p)\pi}{2} \right)}{\left( (1+2p)\pi -2t_0\right)^2} , $$ for any $ t_0\in\left( -\frac{\pi }{2} ,\frac{\pi }{2} \right) $ and that $$ \sum_{p\in\mathbb{Z}} \frac{(-1)^p\left(\xi\left( \frac{(1+2p)\pi}{2} \right)\right)^2}{1+2p} =\frac{\pi }{2} . $$ [b]d)[/b] Deduce that $ \xi\left( \frac{(1+2p)\pi}{2} \right)=(-1)^p, $ for any integer $ p, $ and that $$ \frac{d}{dt}\left( \frac{\xi }{\cos} \right)\left( t_0 \right) =\frac{d}{dt}\left( \frac{\sin }{\cos} \right)\left( t_0 \right) , $$ for any $ t_0\in\left( -\frac{\pi }{2} ,\frac{\pi }{2} \right) . $ [b]e)[/b] Conclude that $ \xi\bigg|_\mathbb{R} =\sin\bigg|_\mathbb{R} . $

2002 China Team Selection Test, 2

Tags: function , algebra
Given an integer $k$. $f(n)$ is defined on negative integer set and its values are integers. $f(n)$ satisfies \[ f(n)f(n+1)=(f(n)+n-k)^2, \] for $n=-2,-3,\cdots$. Find an expression of $f(n)$.

PEN K Problems, 2

Find all surjective functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: \[m \vert n \Longleftrightarrow f(m) \vert f(n).\]

2018-2019 Fall SDPC, 4

Tags: algebra , function
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(f(x)-f(y))+2f(xy)=x^2f(x)+f(y^2)$$ for all real numbers $x,y$.

2008 Germany Team Selection Test, 3

Tags: function , algebra
Determine all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ with $ x,y \in \mathbb{R}$ such that \[ f(x \minus{} f(y)) \equal{} f(x\plus{}y) \plus{} f(y)\]

2006 Pre-Preparation Course Examination, 8

Suppose that $p(n)$ is the number of ways to express $n$ as a sum of some naturall numbers (the two representations $4=1+1+2$ and $4=1+2+1$ are considered the same). Prove that for an infinite number of $n$'s $p(n)$ is even and for an infinite number of $n$'s $p(n)$ is odd.

2005 Harvard-MIT Mathematics Tournament, 3

Let $ f : \mathbf{R} \to \mathbf{R} $ be a continuous function with $ \displaystyle\int_{0}^{1} f(x) f'(x) \, \mathrm{d}x = 0 $ and $ \displaystyle\int_{0}^{1} f(x)^2 f'(x) \, \mathrm{d}x = 18 $. What is $ \displaystyle\int_{0}^{1} f(x)^4 f'(x) \, \mathrm{d} x $?

2011 Kosovo National Mathematical Olympiad, 3

Find maximal value of the function $f(x)=8-3\sin^2 (3x)+6 \sin (6x)$

2005 District Olympiad, 1

Tags: function , algebra
Let $a,b>1$ be two real numbers. Prove that $a>b$ if and only if there exists a function $f: (0,\infty)\to\mathbb{R}$ such that i) the function $g:\mathbb{R}\to\mathbb{R}$, $g(x)=f(a^x)-x$ is increasing; ii) the function $h:\mathbb{R}\to\mathbb{R}$, $h(x)=f(b^x)-x$ is decreasing.

2022 Taiwan TST Round 3, A

Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $$(f(a)-f(b))(f(b)-f(c))(f(c)-f(a)) = f(ab^2+bc^2+ca^2) - f(a^2b+b^2c+c^2a)$$for all real numbers $a$, $b$, $c$. [i]Proposed by Ankan Bhattacharya, USA[/i]

1974 Yugoslav Team Selection Test, Problem 1

Assume that $a$ is a given irrational number. (a) Prove that for each positive real number $\epsilon$ there exists at least one integer $q\ge0$ such that $aq-\lfloor aq\rfloor<\epsilon$. (b) Prove that for given $\epsilon>0$ there exist infinitely many rational numbers $\frac pq$ such that $q>0$ and $\left|a-\frac pq\right|<\frac\epsilon q$.

2000 IMO Shortlist, 1

A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn. How many ways are there to put the cards in the three boxes so that the trick works?

2010 Contests, 4

Tags: function , algebra
Find all functions $ f:\mathbb{R^{\ast }}\rightarrow \mathbb{ R^{\ast }}$ satisfying $f(\frac{f(x)}{f(y)})=\frac{1}{y}f(f(x))$ for all $x,y\in \mathbb{R^{\ast }}$ and are strictly monotone in $(0,+\infty )$

2021 Iran Team Selection Test, 2

Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for any two positive integers $m,n$ we have : $$f(n)+1400m^2|n^2+f(f(m))$$

2007 Romania Team Selection Test, 4

Let $\mathcal O_{1}$ and $\mathcal O_{2}$ two exterior circles. Let $A$, $B$, $C$ be points on $\mathcal O_{1}$ and $D$, $E$, $F$ points on $\mathcal O_{1}$ such that $AD$ and $BE$ are the common exterior tangents to these two circles and $CF$ is one of the interior tangents to these two circles, and such that $C$, $F$ are in the interior of the quadrilateral $ABED$. If $CO_{1}\cap AB=\{M\}$ and $FO_{2}\cap DE=\{N\}$ then prove that $MN$ passes through the middle of $CF$.

2007 Gheorghe Vranceanu, 1

Let $ M $ denote the set of the primitives of a function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]ii)[/b] Show that $ M $ along with the operation $ *:M^2\longrightarrow M $ defined as $ F*G=F+G(2007) $ form a commutative group. [b]iii)[/b] Show that $ M $ is isomorphic with the additive group of real numbers.

2023 OMpD, 1

Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that, for all real numbers $x$ and $y$, $$f(x)(x+f(f(y))) = f(x^2)+xf(y)$$

2014 Putnam, 2

Suppose that $f$ is a function on the interval $[1,3]$ such that $-1\le f(x)\le 1$ for all $x$ and $\displaystyle \int_1^3f(x)\,dx=0.$ How large can $\displaystyle\int_1^3\frac{f(x)}x\,dx$ be?

2004 Moldova Team Selection Test, 4

Let $n$ be an integer bigger than $0$. Let $\mathbb{A}= ( a_1,a_2,...,a_n )$ be a set of real numbers. Find the number of functions $f:A \rightarrow A$ such that $f(f(x))-f(f(y)) \ge x-y$ for any $x,y \in \mathbb{A}$, with $x>y$.

2017 Iran Team Selection Test, 4

A $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ where $h_i\left(x_1,x_2, \cdots , x_n\right)$ are $n$ variable polynomials with real coefficients is called [i]good[/i] if the following condition holds: For any $n$ functions $f_1,f_2, \cdots ,f_n : \mathbb R \to \mathbb R$ if for all $1 \le i \le n+1$, $P_i(x)=h_i \left(f_1(x),f_2(x), \cdots, f_n(x) \right)$ is a polynomial with variable $x$, then $f_1(x),f_2(x), \cdots, f_n(x)$ are polynomials. $a)$ Prove that for all positive integers $n$, there exists a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that the degree of all $h_i$ is more than $1$. $b)$ Prove that there doesn't exist any integer $n>1$ that for which there is a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that all $h_i$ are symmetric polynomials. [i]Proposed by Alireza Shavali[/i]

2016 Vietnam National Olympiad, 1

Find all $a\in\mathbb{R}$ such that there is function $f:\mathbb{R}\to\mathbb{R}$ i) $f(1)=2016$ ii) $f(x+y+f(y))=f(x)+ay\quad\forall x,y\in\mathbb{R}$

1999 Slovenia National Olympiad, Problem 1

Let $r_1,r_2,\ldots,r_m$ be positive rational numbers with a sum of $1$. Find the maximum values of the function $f:\mathbb N\to\mathbb Z$ defined by $$f(n)=n-\lfloor r_1n\rfloor-\lfloor r_2n\rfloor-\ldots-\lfloor r_mn\rfloor$$

1987 IberoAmerican, 1

Tags: function , algebra
Find the function $f(x)$ such that \[f(x)^2f\left(\frac{1-x}{x+1}\right) =64x \] for $x\not=0,x\not=1,x\not=-1$.