This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1994 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 8

Tags: function
Let $ f$ be a function defined on $ \text{N}_0 \equal{} \{ 0,1,2,3,...\}$ and with values in $ \text{N}_0$, such that for $ n,m \in \text{N}_0$ and $ m \leq 9, f(10n \plus{} m) \equal{} f(n) \plus{} 11m$ and $ f(0) \equal{} 0.$ How many solutions are there to the equation $ f(x) \equal{} 1995$? A. None B. 1 C. 2 D. 11 E. Infinitely many

2011 IMO Shortlist, 8

Let $k \in \mathbb{Z}^+$ and set $n=2^k+1.$ Prove that $n$ is a prime number if and only if the following holds: there is a permutation $a_{1},\ldots,a_{n-1}$ of the numbers $1,2, \ldots, n-1$ and a sequence of integers $g_{1},\ldots,g_{n-1},$ such that $n$ divides $g^{a_i}_i - a_{i+1}$ for every $i \in \{1,2,\ldots,n-1\},$ where we set $a_n = a_1.$ [i]Proposed by Vasily Astakhov, Russia[/i]

2011 ELMO Shortlist, 2

Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ such that whenever $a>b>c>d>0$ and $ad=bc$, \[f(a+d)+f(b-c)=f(a-d)+f(b+c).\] [i]Calvin Deng.[/i]

2005 Bulgaria Team Selection Test, 4

Let $a_{i}$ and $b_{i}$, where $i \in \{1,2, \dots, 2005 \}$, be real numbers such that the inequality $(a_{i}x-b_{i})^{2} \ge \sum_{j=1, j \not= i}^{2005} (a_{j}x-b_{j})$ holds for all $x \in \mathbb{R}$ and all $i \in \{1,2, \dots, 2005 \}$. Find the maximum possible number of positive numbers amongst $a_{i}$ and $b_{i}$, $i \in \{1,2, \dots, 2005 \}$.

2000 Harvard-MIT Mathematics Tournament, 40

Let $\phi(n)$ denote the number of positive integers less than or equal to $n$ and relatively prime to $n$. Find all natural numbers $n$ and primes $p$ such that $\phi(n)=\phi(np)$.

2022 USA TSTST, 4

Let $\mathbb N$ denote the set of positive integers. A function $f\colon\mathbb N\to\mathbb N$ has the property that for all positive integers $m$ and $n$, exactly one of the $f(n)$ numbers \[f(m+1),f(m+2),\ldots,f(m+f(n))\] is divisible by $n$. Prove that $f(n)=n$ for infinitely many positive integers $n$.

2008 AIME Problems, 8

Find the positive integer $ n$ such that \[\arctan\frac{1}{3}\plus{}\arctan\frac{1}{4}\plus{}\arctan\frac{1}{5}\plus{}\arctan\frac{1}{n}\equal{}\frac{\pi}{4}.\]

2008 Baltic Way, 12

In a school class with $ 3n$ children, any two children make a common present to exactly one other child. Prove that for all odd $ n$ it is possible that the following holds: For any three children $ A$, $ B$ and $ C$ in the class, if $ A$ and $ B$ make a present to $ C$ then $ A$ and $ C$ make a present to $ B$.

2005 Brazil Undergrad MO, 1

Determine the number of possible values for the determinant of $A$, given that $A$ is a $n\times n$ matrix with real entries such that $A^3 - A^2 - 3A + 2I = 0$, where $I$ is the identity and $0$ is the all-zero matrix.

2011 IMO, 5

Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$. [i]Proposed by Mahyar Sefidgaran, Iran[/i]

1977 Miklós Schweitzer, 7

Let $ G$ be a locally compact solvable group, let $ c_1,\ldots, c_n$ be complex numbers, and assume that the complex-valued functions $ f$ and $ g$ on $ G$ satisfy \[ \sum_{k=1}^n c_k f(xy^k)=f(x)g(y) \;\textrm{for all} \;x,y \in G \ \ .\] Prove that if $ f$ is a bounded function and \[ \inf_{x \in G} \textrm{Re} f(x) \chi(x) >0\] for some continuous (complex) character $ \chi$ of $ G$, then $ g$ is continuous. [i]L. Szekelyhidi[/i]

1991 Arnold's Trivium, 65

Find the mean value of the function $\ln r$ on the circle $(x - a)^2 + (y-b)^2 = R^2$ (of the function $1/r$ on the sphere).

2003 District Olympiad, 2

Let $f:[0,1]\rightarrow [0,1]$ a continuous function in $0$ and in $1$, which has one-side limits in any point and $f(x-0)\le f(x)\le f(x+0),\ (\forall)x\in (0,1)$. Prove that: a)for the set $A=\{x\in [0,1]\ |\ f(x)\ge x\}$, we have $\sup A\in A$. b)there is $x_0\in [0,1]$ such that $f(x_0)=x_0$. [i]Mihai Piticari[/i]

2012 Poland - Second Round, 1

$f,g:\mathbb{R}\rightarrow\mathbb{R}$ find all $f,g$ satisfying $\forall x,y\in \mathbb{R}$: \[g(f(x)-y)=f(g(y))+x.\]

2009 Hungary-Israel Binational, 3

Does there exist a pair $ (f; g)$ of strictly monotonic functions, both from $ \mathbb{N}$ to $ \mathbb{N}$, such that \[ f(g(g(n))) < g(f(n))\] for every $ n \in\mathbb{N}$?

PEN A Problems, 88

Find all positive integers $n$ such that $9^{n}-1$ is divisible by $7^n$.

2014 USAMTS Problems, 2:

Let $A_1A_2A_3A_4A_5$ be a regular pentagon with side length 1. The sides of the pentagon are extended to form the 10-sided polygon shown in bold at right. Find the ratio of the area of quadrilateral $A_2A_5B_2B_5$ (shaded in the picture to the right) to the area of the entire 10-sided polygon. [asy] size(8cm); defaultpen(fontsize(10pt)); pair A_2=(-0.4382971011,5.15554989475), B_4=(-2.1182971011,-0.0149584477027), B_5=(-4.8365942022,8.3510997895), A_3=(0.6,8.3510997895), B_1=(2.28,13.521608132), A_4=(3.96,8.3510997895), B_2=(9.3965942022,8.3510997895), A_5=(4.9982971011,5.15554989475), B_3=(6.6782971011,-0.0149584477027), A_1=(2.28,3.18059144705); filldraw(A_2--A_5--B_2--B_5--cycle,rgb(.8,.8,.8)); draw(B_1--A_4^^A_4--B_2^^B_2--A_5^^A_5--B_3^^B_3--A_1^^A_1--B_4^^B_4--A_2^^A_2--B_5^^B_5--A_3^^A_3--B_1,linewidth(1.2)); draw(A_1--A_2--A_3--A_4--A_5--cycle); pair O = (A_1+A_2+A_3+A_4+A_5)/5; label("$A_1$",A_1, 2dir(A_1-O)); label("$A_2$",A_2, 2dir(A_2-O)); label("$A_3$",A_3, 2dir(A_3-O)); label("$A_4$",A_4, 2dir(A_4-O)); label("$A_5$",A_5, 2dir(A_5-O)); label("$B_1$",B_1, 2dir(B_1-O)); label("$B_2$",B_2, 2dir(B_2-O)); label("$B_3$",B_3, 2dir(B_3-O)); label("$B_4$",B_4, 2dir(B_4-O)); label("$B_5$",B_5, 2dir(B_5-O)); [/asy]

1999 Italy TST, 3

Tags: algebra , function
(a) Find all strictly monotone functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x+f(y))=f(x)+y\quad\text{for all real}\ x,y. \] (b) If $n>1$ is an integer, prove that there is no strictly monotone function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[ f(x+f(y))=f(x)+y^n\quad \text{for all real}\ x, y.\]

2000 AIME Problems, 12

Given a function $f$ for which \[f(x)=f(398-x)=f(2158-x)=f(3214-x) \]holds for all real $x,$ what is the largest number of different values that can appear in the list $f(0),f(1),f(2),\ldots,f(999)?$

2018 District Olympiad, 4

Tags: function
Let $f:\mathbb{R} \to\mathbb{R}$ be a function. For every $a\in\mathbb{Z}$ consider the function $f_a : \mathbb{R} \to\mathbb{R}$, $f_a(x) = (x - a)f(x)$. Prove that if there exist infinitely many values $a\in\mathbb{Z}$ for which the functions $f_a$ are increasing, then the function $f$ is monotonic.

1994 French Mathematical Olympiad, Problem 3

Let us define a function $f:\mathbb N\to\mathbb N_0$ by $f(1)=0$ and, for all $n\in\mathbb N$, $$f(2n)=2f(n)+1,\qquad f(2n+1)=2f(n).$$Given a positive integer $p$, define a sequence $(u_n)$ by $u_0=p$ and $u_{k+1}=f(u_k)$ whenever $u_k\ne0$. (a) Prove that, for each $p\in\mathbb N$, there is a unique integer $v(p)$ such that $u_{v(p)}=0$. (b) Compute $v(1994)$. What is the smallest integer $p>0$ for which $v(p)=v(1994)$. (c) Given an integer $N$, determine the smallest integer $p$ such that $v(p)=N$.

1966 Spain Mathematical Olympiad, 8

Determine the values of $a, b, c$, so that the graphical representation of the function $$y = ax^3 + bx^2 + cx$$ has an inflection point at the point of abscissa $ x = 3$, with tangent at the point of equation $x - 4y + 1 = 0.$ Then draw the corresponding graph.

2016 Olympic Revenge, 5

Let $T$ the set of the infinite sequences of integers. For two given elements in $T$: $(a_{1},a_{2},a_{3},...)$ and $(b_{1},b_{2},b_{3},...)$, define the sum $(a_{1},a_{2},a_{3},...)+(b_{1},b_{2},b_{3},...)=(a_{1}+b_{1},a_{2}+b_{2},a_{3}+b_{3},...)$. Let $f: T\rightarrow$ $\mathbb{Z}$ a function such that: i) If $x\in T$ has exactly one of your terms equal $1$ and all the others equal $0$, then $f(x)=0$. ii)$f(x+y)=f(x)+f(y)$, for all $x,y\in T$. Prove that $f(x)=0$ for all $x\in T$

2025 Israel TST, P1

Tags: function , algebra
Let \(\mathcal{F}\) be a family of functions from \(\mathbb{R}^+ \to \mathbb{R}^+\). It is known that for all \( f, g \in \mathcal{F} \), there exists \( h \in \mathcal{F} \) such that for all \( x, y \in \mathbb{R}^+ \), the following equation holds: \[ y^2 \cdot f\left(\frac{g(x)}{y}\right) = h(xy) \] Prove that for all \( f \in \mathcal{F} \) and all \( x \in \mathbb{R}^+ \), the following identity is satisfied: \[ f\left(\frac{x}{f(x)}\right) = 1. \]

2008 AMC 12/AHSME, 12

Tags: function , algebra , domain
A function $ f$ has domain $ [0,2]$ and range $ [0,1]$. (The notation $ [a,b]$ denotes $ \{x: a\le x\le b\}$.) What are the domain and range, respectively, of the function $ g$ defined by $ g(x)\equal{}1\minus{}f(x\plus{}1)$? $ \textbf{(A)}\ [\minus{}1,1],[\minus{}1,0] \qquad \textbf{(B)}\ [\minus{}1,1],[0,1] \qquad \textbf{(C)}\ [0,2],[\minus{}1,0] \qquad \textbf{(D)}\ [1,3],[\minus{}1,0] \qquad \textbf{(E)}\ [1,3],[0,1]$