Found problems: 4776
2019 Gulf Math Olympiad, 4
Consider the sequence $(a_n)_{n\ge 1}$ defined by $a_n=n$ for $n\in \{1,2,3.4,5,6\}$, and for $n \ge 7$: $$a_n={\lfloor}\frac{a_1+a_2+...+a_{n-1}}{2}{\rfloor}$$
where ${\lfloor}x{\rfloor}$ is the greatest integer less than or equal to $x$. For example : ${\lfloor}2.4{\rfloor} = 2, {\lfloor}3{\rfloor} = 3$ and ${\lfloor}\pi {\rfloor}= 3$.
For all integers $n \ge 2$, let $S_n = \{a_1,a_1,...,a_n\}- \{r_n\}$ where $r_n$ is the remainder when $a_1 + a_2 + ... + a_n$ is divided by $3$. The minus $-$ denotes the ''[i]remove it if it is there[/i]'' notation. For example : $S_4 = {2,3,4}$ because $r_4= 1$ so $1$ is removed from $\{1,2,3,4\}$. However $S_5= \{1,2,3,4,5\}$ betawe $r_5 = 0$ and $0$ is not in the set $\{1,2,3,4,5\}$.
1. Determine $S_7,S_8,S_9$ and $S_{10}$.
2. We say that a set $S_n$ for $n\ge 6$ is well-balanced if it can be partitioned into three pairwise disjoint subsets with equal sum. For example : $S_6 = \{1,2,3,4,5,6\} =\{1,6\}\cup \{2,5\}\cup \{3,4\}$ and $1 +6 = 2 + 5 = 3 + 4$. Prove that $S_7,S_8,S_9$ and $S_{10}$ are well-balanced .
3. Is the set $S_{2019}$ well-balanced? Justify your answer.
2002 Italy TST, 3
Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ which satisfy the following conditions:
$(\text{i})$ $f(x+f(y))=f(x)f(y)$ for all $x,y>0;$
$(\text{ii})$ there are at most finitely many $x$ with $f(x)=1$.
2010 Victor Vâlcovici, 2
Let be a finite set $ S. $ Determine the number of functions $ f:S\rightarrow S $ that satisfy $ f\circ f=f. $
2023 Indonesia TST, 3
Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called [i]nice[/i] if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\] Prove that the number of nice functions is at least $n^n$.
1995 Singapore Team Selection Test, 1
Let $f(x) = \frac{1}{1+x}$ where $x$ is a positive real number, and for any positive integer $n$,
let $g_n(x) = x + f(x) + f(f(x)) + ... + f(f(... f(x)))$, the last term being $f$ composed with itself $n$ times. Prove that
(i) $g_n(x) > g_n(y)$ if $x > y > 0$.
(ii) $g_n(1) = \frac{F_1}{F_2}+\frac{F_2}{F_3}+...+\frac{F_{n+1}}{F_{n+2}}$ , where $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1} +F_n$ for $n \ge 1$.
2012 Bosnia Herzegovina Team Selection Test, 4
Define a function $f:\mathbb{N}\rightarrow\mathbb{N}$, \[f(1)=p+1,\] \[f(n+1)=f(1)\cdot f(2)\cdots f(n)+p,\] where $p$ is a prime number. Find all $p$ such that there exists a natural number $k$ such that $f(k)$ is a perfect square.
2012 Today's Calculation Of Integral, 810
Given the functions $f(x)=xe^{x}+2x\int_0^2 |g(t)|dt-1,\ g(x)=x^2-x\int_0^1 f(t)dt$, evaluate $\int_0^2 |g(t)|dt.$
2018 Brazil Undergrad MO, 13
A continuous function $ f: \mathbb {R} \to \mathbb {R} $ satisfies $ f (x) f (f (x)) = 1 $ for every real $ x $ and $ f (2020) = 2019 $ . What is the value of $ f (2018) $?
1975 Miklós Schweitzer, 2
Let $ \mathcal{A}_n$ denote the set of all mappings $ f: \{1,2,\ldots ,n \} \rightarrow \{1,2,\ldots, n \}$ such that $ f^{-1}(i) :=\{ k \colon f(k)=i\ \} \neq \varnothing$ implies $ f^{-1}(j) \neq \varnothing, j \in \{1,2,\ldots, i \} .$ Prove \[ |\mathcal{A}_n| =
\sum_{k=0}^{\infty} \frac{k^n}{2^{k+1}}.\]
[i]L. Lovasz[/i]
2013 Online Math Open Problems, 50
Let $S$ denote the set of words $W = w_1w_2\ldots w_n$ of any length $n\ge0$ (including the empty string $\lambda$), with each letter $w_i$ from the set $\{x,y,z\}$. Call two words $U,V$ [i]similar[/i] if we can insert a string $s\in\{xyz,yzx,zxy\}$ of three consecutive letters somewhere in $U$ (possibly at one of the ends) to obtain $V$ or somewhere in $V$ (again, possibly at one of the ends) to obtain $U$, and say a word $W$ is [i]trivial[/i] if for some nonnegative integer $m$, there exists a sequence $W_0,W_1,\ldots,W_m$ such that $W_0=\lambda$ is the empty string, $W_m=W$, and $W_i,W_{i+1}$ are similar for $i=0,1,\ldots,m-1$. Given that for two relatively prime positive integers $p,q$ we have
\[\frac{p}{q} = \sum_{n\ge0} f(n)\left(\frac{225}{8192}\right)^n,\]where $f(n)$ denotes the number of trivial words in $S$ of length $3n$ (in particular, $f(0)=1$), find $p+q$.
[i]Victor Wang[/i]
2011 Turkey Team Selection Test, 3
Let $A$ and $B$ be sets with $2011^2$ and $2010$ elements, respectively. Show that there is a function $f:A \times A \to B$ satisfying the condition $f(x,y)=f(y,x)$ for all $(x,y) \in A \times A$ such that for every function $g:A \to B$ there exists $(a_1,a_2) \in A \times A$ with $g(a_1)=f(a_1,a_2)=g(a_2)$ and $a_1 \neq a_2.$
2011 Kosovo National Mathematical Olympiad, 2
Find all solutions to the equation:
\[ \left(\left\lfloor x+\frac{7}{3} \right\rfloor \right)^2-\left\lfloor x-\frac{9}{4} \right\rfloor = 16 \]
2013 USAMO, 5
Given positive integers $m$ and $n$, prove that there is a positive integer $c$ such that the numbers $cm$ and $cn$ have the same number of occurrences of each non-zero digit when written in base ten.
2009 Romania National Olympiad, 1
Find all functions $ f\in\mathcal{C}^1 [0,1] $ that satisfy $ f(1)=-1/6 $ and
$$ \int_0^1 \left( f'(x) \right)^2 dx\le 2\int_0^1 f(x)dx. $$
2012 Federal Competition For Advanced Students, Part 1, 1
Determine all functions $f: \mathbb{Z}\to\mathbb{Z}$ satisfying the following property: For each pair of integers $m$ and $n$ (not necessarily distinct), $\mathrm{gcd}(m, n)$ divides $f(m) + f(n)$.
Note: If $n\in\mathbb{Z}$, $\mathrm{gcd}(m, n)=\mathrm{gcd}(|m|, |n|)$ and $\mathrm{gcd}(n, 0)=n$.
2005 Today's Calculation Of Integral, 75
A function $f(\theta)$ satisfies the following conditions $(a),(b)$.
$(a)\ f(\theta)\geq 0$
$(b)\ \int_0^{\pi} f(\theta)\sin \theta d\theta =1$
Prove the following inequality.
\[\int_0^{\pi} f(\theta)\sin n\theta \ d\theta \leq n\ (n=1,2,\cdots)\]
2018 Iran MO (2nd Round), 4
Find all functions $f:\Bbb {R} \rightarrow \Bbb {R} $ such that:
$$f(x+y)f(x^2-xy+y^2)=x^3+y^3$$
for all reals $x, y $.
2010 AIME Problems, 4
Jackie and Phil have two fair coins and a third coin that comes up heads with probability $ \frac47$. Jackie flips the three coins, and then Phil flips the three coins. Let $ \frac{m}{n}$ be the probability that Jackie gets the same number of heads as Phil, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.
2004 Miklós Schweitzer, 4
Determine all totally multiplicative and non-negative functions $f\colon\mathbb{Z}\rightarrow \mathbb{Z}$ with the property that if $a, b\in \mathbb{Z}$ and $b\neq 0$, then there exist integers $q$ and $r$ such that $a-qb+r$ and $f(r)<f(b)$.
1988 Polish MO Finals, 1
$d$ is a positive integer and $f : [0,d] \rightarrow \mathbb{R}$ is a continuous function with $f(0) = f(d)$. Show that there exists $x \in [0,d-1]$ such that $f(x) = f(x+1)$.
2014 ISI Entrance Examination, 2
Let us consider a triangle $\Delta{PQR}$ in the co-ordinate plane. Show for every function $f: \mathbb{R}^2\to \mathbb{R}\;,f(X)=ax+by+c$ where $X\equiv (x,y) \text{ and } a,b,c\in\mathbb{R}$ and every point $A$ on $\Delta PQR$ or inside the triangle we have the inequality:
\begin{align*} & f(A)\le \text{max}\{f(P),f(Q),f(R)\} \end{align*}
2024 Romania National Olympiad, 4
Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions with $g(x)=2f(x)+f(x^2),$ for all $x \in \mathbb{R}.$
a) Prove that, if $f$ is bounded in a neighbourhood of the origin and $g$ is continuous in the origin, then $f$ is continuous in the origin.
b) Provide an example of function $f$, discontinuous in the origin, for which the function $g$ is continuous in the origin.
PEN D Problems, 18
Let $p$ be a prime number. Determine the maximal degree of a polynomial $T(x)$ whose coefficients belong to $\{ 0,1,\cdots,p-1 \}$, whose degree is less than $p$, and which satisfies \[T(n)=T(m) \; \pmod{p}\Longrightarrow n=m \; \pmod{p}\] for all integers $n, m$.
2004 Iran MO (3rd Round), 10
$f:\mathbb{R}^2 \to \mathbb{R}^2$ is injective and surjective. Distance of $X$ and $Y$ is not less than distance of $f(X)$ and $f(Y)$. Prove for $A$ in plane:
\[ S(A) \geq S(f(A))\]
where $S(A)$ is area of $A$
2010 Gheorghe Vranceanu, 1
Let be a number $ x $ and three positive numbers $ a,b,c $ such that $ a^x+b^x=c^x. $
Prove that $ a^y,b^y,c^y $ are the lenghts of the sides of an obtuse triangle if and only if $ y<x<2y. $