This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2011 Morocco National Olympiad, 3

Tags: search , function , algebra
Find all functions $f : \mathbb{R} \to \mathbb{R} $ which verify the relation \[(x-2)f(y)+f(y+2f(x))= f(x+yf(x)), \qquad \forall x,y \in \mathbb R.\]

1998 Cono Sur Olympiad, 4

Tags: function , algebra
Find all functions $R-->R$ such that: $f(x^2) - f(y^2) + 2x + 1 = f(x + y)f(x - y)$

2011 Postal Coaching, 3

Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that \[2f (f (x)) = (x^2 - x)f (x) + 4 - 2x\] for all real $x$. Find $f (2)$ and all possible values of $f (1)$. For each value of $f (1)$, construct a function achieving it and satisfying the given equation.

1996 Romania National Olympiad, 2

Suppose that $ f: [a,b]\rightarrow \mathbb{R} $ be a monotonic function and for every $ x_1,x_2\in [a,b] $ that $ x_1<x_2 $ ,there exist $ c\in (a,b) $ such that $ \int _{x_1}^{x_2}f(x)dx=f(c)(x_1-x_2) $ a) Show that $ f $ be the continuous function on interval $ (a,b) $ b) Suppose that $ f $ is integrable function on interval $ [a,b] $ but $ f $ isn't a monotonic function then ,is it the result of part a) right?

2005 SNSB Admission, 3

Let $ f:\mathbb{C}\longrightarrow\mathbb{C} $ be an holomorphic function which has the property that there exist three positive real numbers $ a,b,c $ such that $ |f(z)|\geqslant a|z|^b , $ for any complex numbers $ z $ with $ |z|\geqslant c. $ Prove that $ f $ is polynomial with degree at least $ \lceil b\rceil . $

2019 Hong Kong TST, 1

Tags: algebra , function
Let $a$ be a real number. Suppose the function $f(x) = \frac{a}{x-1} + \frac{1}{x-2} + \frac{1}{x-6}$ defined in the interval $3 < x < 5$ attains its maximum at $x=4$. Find the value of $a.$

1996 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 5

Let $ f$ be a function from the non-negative integers to the non-negative integers such that $ f(nm) \equal{} n f(m) \plus{} m f(n), f(10) \equal{} 19, f(12) \equal{} 52,$ and $ f(15) \equal{} 26.$ What is $ f(8)$? A. 12 B. 24 C. 36 D. 48 E. 60

1991 Federal Competition For Advanced Students, P2, 2

Find all functions $ f: \mathbb{Z} \minus{} \{ 0 \} \rightarrow \mathbb{Q}$ satisfying: $ f \left( \frac{x\plus{}y}{3} \right)\equal{}\frac {f(x)\plus{}f(y)}{2},$ whenever $ x,y,\frac{x\plus{}y}{3} \in \mathbb{Z} \minus{} \{ 0 \}.$

2019 Brazil Team Selection Test, 4

Let $f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \}$ be a function such that $f(m + n) | f(m) + f(n) $ for all pairs $m,n$ of positive integers. Prove that there exists a positive integer $c > 1$ which divides all values of $f$.

2025 Korea - Final Round, P2

Let $\mathbb{R}$ be the set of real numbers. Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following condition. Here, $f^{100}(x)$ is the function obtained by composing $f(x)$ $100$ times, that is, $(\underbrace{f \circ f \circ \cdots \circ f}_{100 \ \text{times}})(x).$ [b](Condition)[/b] For all $x, y \in \mathbb{R}$, $$f(x + f^{100}(y)) = x + y \ \ \ \text{or} \ \ \ f(f^{100}(x) + y) = x + y$$

1983 Putnam, B4

[b]Problem.[/b] Let $f:\mathbb{R}_0^+\rightarrow\mathbb{R}_0^+$ be a function defined as $$f(n)=n+\lfloor\sqrt{n}\rfloor~\forall~n\in\mathbb{R}_0^+.$$ Prove that for any positive integer $m,$ the sequence $$m,f(m),f(f(m)),f(f(f(m))),\ldots$$ contains a perfect square.

2014 Iran MO (3rd Round), 6

$P$ is a monic polynomial of odd degree greater than one such that there exists a function $f : \mathbb{R} \rightarrow \mathbb{N}$ such that for each $x \in \mathbb{R}$ ,\[f(P(x))=P(f(x))\] (a) Prove that there are a finite number of natural numbers in range of $f$. (b) Prove that if $f$ is not constant then the equation $P(x)-x=0$ has at least two real solutions. (c) For each natural $n>1$ prove that there exists a function $f : \mathbb{R} \rightarrow \mathbb{N}$ and a monic polynomial of odd degree greater than one $P$ such that for each $x \in \mathbb{R}$ ,\[f(P(x))=P(f(x))\] and range of $f$ contains exactly $n$ different numbers. Time allowed for this problem was 105 minutes.

MathLinks Contest 7th, 5.3

If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]

2010 AMC 12/AHSME, 20

A geometric sequence $ (a_n)$ has $ a_1\equal{}\sin{x}, a_2\equal{}\cos{x},$ and $ a_3\equal{}\tan{x}$ for some real number $ x$. For what value of $ n$ does $ a_n\equal{}1\plus{}\cos{x}$? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

2013 AIME Problems, 11

Let $A = \left\{ 1,2,3,4,5,6,7 \right\}$ and let $N$ be the number of functions $f$ from set $A$ to set $A$ such that $f(f(x))$ is a constant function. Find the remainder when $N$ is divided by $1000$.

2012 Pre-Preparation Course Examination, 5

The $2^{nd}$ order differentiable function $f:\mathbb R \longrightarrow \mathbb R$ is in such a way that for every $x\in \mathbb R$ we have $f''(x)+f(x)=0$. [b]a)[/b] Prove that if in addition, $f(0)=f'(0)=0$, then $f\equiv 0$. [b]b)[/b] Use the previous part to show that there exist $a,b\in \mathbb R$ such that $f(x)=a\sin x+b\cos x$.

2009 South africa National Olympiad, 6

Let $A$ denote the set of real numbers $x$ such that $0\le x<1$. A function $f:A\to \mathbb{R}$ has the properties: (i) $f(x)=2f(\frac{x}{2})$ for all $x\in A$; (ii) $f(x)=1-f(x-\frac{1}{2})$ if $\frac{1}{2}\le x<1$. Prove that (a) $f(x)+f(1-x)\ge \frac{2}{3}$ if $x$ is rational and $0<x<1$. (b) There are infinitely many odd positive integers $q$ such that equality holds in (a) when $x=\frac{1}{q}$.

2024 Romania EGMO TST, P1

We denote by $\mathbb{R}^\plus{}$ the set of all positive real numbers. Find all functions $f: \mathbb R^ \plus{} \rightarrow\mathbb R^ \plus{}$ which have the property: \[f(x)f(y)\equal{}2f(x\plus{}yf(x))\] for all positive real numbers $x$ and $y$. [i]Proposed by Nikolai Nikolov, Bulgaria[/i]

2014 Contests, 2

Let us consider a triangle $\Delta{PQR}$ in the co-ordinate plane. Show for every function $f: \mathbb{R}^2\to \mathbb{R}\;,f(X)=ax+by+c$ where $X\equiv (x,y) \text{ and } a,b,c\in\mathbb{R}$ and every point $A$ on $\Delta PQR$ or inside the triangle we have the inequality: \begin{align*} & f(A)\le \text{max}\{f(P),f(Q),f(R)\} \end{align*}

2016 India IMO Training Camp, 2

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $$f\left(x^3+f(y)\right)=x^2f(x)+y,$$for all $x,y\in\mathbb{R}.$ (Here $\mathbb{R}$ denotes the set of all real numbers.)

1981 Canada National Olympiad, 4

$P(x),Q(x)$ are two polynomials such that $P(x)=Q(x)$ has no real solution, and $P(Q(x))\equiv Q(P(x))\forall x\in\mathbb{R}$. Prove that $P(P(x))=Q(Q(x))$ has no real solution.

2024 VJIMC, 1

Suppose that $f:[-1,1] \to \mathbb{R}$ is continuous and satisfies \[\left(\int_{-1}^1 e^xf(x) dx\right)^2 \ge \left(\int_{-1}^1 f(x) dx\right)\left(\int_{-1}^1 e^{2x}f(x) dx\right).\] Prove that there exists a point $c \in (-1,1)$ such that $f(c)=0$.

2008 District Round (Round II), 4

A semicircle has diameter $AB$ and center $S$,with a point $M$ on the circumference.$U,V$ are the incircles of sectors $ASM$ and $BSM$.Prove that circles $U,V$ can be seperated by a line perpendicular to $AB$.

2006 Taiwan National Olympiad, 3

$f(x)=x^3-6x^2+17x$. If $f(a)=16, f(b)=20$, find $a+b$.

2008 Hong kong National Olympiad, 1

Let $ f(x) \equal{} c_m x^m \plus{} c_{m\minus{}1} x^{m\minus{}1} \plus{}...\plus{} c_1 x \plus{} c_0$, where each $ c_i$ is a non-zero integer. Define a sequence $ \{ a_n \}$ by $ a_1 \equal{} 0$ and $ a_{n\plus{}1} \equal{} f(a_n)$ for all positive integers $ n$. (a) Let $ i$ and $ j$ be positive integers with $ i<j$. Show that $ a_{j\plus{}1} \minus{} a_j$ is a multiple of $ a_{i\plus{}1} \minus{} a_i$. (b) Show that $ a_{2008} \neq 0$